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Abstract

Mössbauer nuclei in thin film nanostructures are an established platform for X-ray
quantum optics, and provide novel methods for the narrowband control of hard X-
rays. However, quantum optical models for these nanostructures have so far only
considered grazing incidence geometry, in a regime of idealized plane wave propa-
gation, and homogeneous nuclear hyper-fine environments. We develop a theoret-
ical description for the interaction of X-rays with Mössbauer nuclei in arbitrary ge-
ometries, including dispersive effects, using macroscopic quantum electrodynamics
to derive Maxwell-Bloch equations. We use this formalism to study:

(i) the effects of beam divergence and inhomogeneous hyper-fine distributions
on energy spectra at grazing incidence. In particular, we demonstrate that the
collective Lamb shift and broadening of single mode super-radiance can be
used to overcome the effects of inhomogeneous broadening, and result in a
single line spectrum in the large collective coupling limit.

(ii) the equations of motion for guided modes coupled to Mössbauer nuclei. We
show that these modes obey equations of motion analogous to nuclear forward
scattering. We study the interference of multiple modes coupled to a longi-
tudinally structured layer of nuclei, and demonstrate selective super and sub
radiant emission. This demonstrates that front coupling to thin film nanos-
tructures opens the door for a vast new space of techniques for the control of
hard X-rays.

Zusammenfassung

Mössbauer-Kerne in Dünnschicht-Nanostrukturen sind eine etablierte Plattform
für die Röntgenquantenoptik und bieten neuartige Methoden für die schmalbandi-
ge Kontrolle harter Röntgenstrahlung. Jedoch haben quantenoptische Modelle für
diese Nanostrukturen bisher nur die Geometrie des streifenden Einfalls, eine ideali-
sierte ebene Wellenausbreitung und homogene Hyperfeinstrukturumgebungen im
Kern berücksichtigt. Wir entwickeln eine theoretische Beschreibung der Wechsel-
wirkung von Röntgenstrahlen mit Mössbauer-Kernen in beliebigen Geometrien,
einschließlich dispersiver Effekte, unter Verwendung der makroskopischen Quan-
tenelektrodynamik zur Herleitung der Maxwell-Bloch-Gleichungen. Wir verwen-
den diesen Formalismus zur Untersuchung:

(i) der Auswirkungen von Strahldivergenz und inhomogenen Hyperfein-Verteil-
ungen auf Energiespektren bei streifendem Einfall. Insbesondere zeigen wir,
dass die kollektive Lamb-Verschiebung und die Verbreiterung einer Einzel-
moden-Superradianz genutzt werden können, um die Auswirkungen der in-
homogenen Verbreiterung zu überwinden und ein einzelnes Linienspektrum
im großen kollektiven Kopplungslimit zu erhalten.

(ii) der Bewegungsgleichungen für geführte Moden gekoppelt an Mössbauer-
Kerne. Wir zeigen, dass sie Bewegungsgleichungen gehorchen, welche analog
zur Kernvorwärtsstreuung sind. Wir untersuchen die Interferenz mehrerer
Moden, die an eine longitudinal strukturiereten Schicht von Kernen gekop-
pelt sind, und demonstrieren selektive Super- und Subradianz. Dies zeigt,
dass die Vorwärtskopplung an Dünnfilm-Nanostrukturen die Tür zu einem
riesigen neuen Raum geometrischer Techniken für die Kontrolle harter Rönt-
genstrahlung öffnet.
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Chapter 1

Introduction

Theodore Maiman, the inventor of the ruby laser, once remarked “A laser is a solu-
tion seeking a problem” [1]. Despite his misgivings, the use of lasers as a coherent
source has enabled precise optical control of the quantum states of matter, and ush-
ered in the modern era of quantum optics. Although considerable experimental
progress has been made in the microwave, optical, and ultraviolet domain, creation
of coherent X-ray sources has been far more difficult. In the past two decades how-
ever, the advent of high brilliance, highly coherent third generation synchrotron
sources as well as X-ray free electron lasers (XFEL) has finally allowed X-rays to
join the stable of modern quantum optics. Due to the high energy, short length
and time scales, and low attenuation of X-rays, this has led to the development of
powerful new techniques in ultra-fast spectroscopy [2, 3], nano-scale imaging [4–
6], excitation of inner shell atomic transitions [7, 8], and could in the future lead
to innovations in quantum communication, macroscopic entanglement [9], and be-
yond.

Quantum optics is a broad field, and a thorough overview of the interesting phe-
nomena that have been studied would merit a book of its own. Nevertheless, let us
briefly touch on some key results. Historically, some of the earliest experimental
evidence of the quantized nature of atomic transitions involved the fluorescence
of atoms under incoherent illumination. In this regime, the energy levels of the
atom are randomly populated, and emit photons irreversibly via spontaneous de-
cay. Under illumination by periodic, coherent sources however, the situation is
drastically different. Instead of random population and decay, the atom under-
goes Rabi oscillations; periodically oscillating between the ground and excited state
that are resonant to the driving field. The introduction of multiple driving fields
introduces counterintuitive and powerful control techniques, such as electromag-
netically induced transparency (EIT) [10], or stimulated Raman adiabatic passage
(STIRAP) [11]. In EIT, the interference between two Rabi oscillations causes a
window of transparency where an atom would otherwise be opaque, while in STI-
RAP, population can be transferred between two dipole-forbidden states, via an
intermediate coupling to a third state. However, with careful design of the pulse
sequences used to excite the intermediate transitions, the population transfer can
occur without populating the intermediate state, bypassing the inefficiencies that
would be incurred by spontaneous decay from the intermediate state.

In parallel with these developments in single atom control, the collective interac-
tion of large ensembles of atoms has been a field of great interest too. The most fa-
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2 CHAPTER 1. INTRODUCTION

mous effect in collective quantum optics is perhaps Dicke super-radiance. In 1954,
Dicke demonstrated that ensembles of N atoms placed in a cloud smaller than the
wavelength of a transition emit and absorb collectively, with their spontaneous de-
cay rate enhanced by a factor of N [12]. Later, it was demonstrated that this effect
holds if the atoms interact only via a single electromagnetic mode [13]. In more
recent years, there has been considerable interest in collective interactions beyond
the single mode, or large wavelength regimes. It has been shown that in general,
collective emission can be described via the eigenfunctions of an effective dipole-
dipole interaction potential, and is highly geometry dependent [14–18]. This has
opened a new door for the design of optical metamaterials, via the geometric place-
ment of atomic arrays. For example, it has been demonstrated that sub-wavelength,
square lattices of atoms can be used as mirrors for photons resonant to their dipole
transitions [19], while 1D arrays have been proposed as efficient photon storage
devices [20, 21], or to achieve ultra-strong coupling, such that single photon Rabi
oscillations could be observed [22].

X-ray quantum optics and its advantages

Transitions between nuclear isomeric states and the nuclear ground state provide
the analogue of atomic transitions at hard X-ray energies, on the order of 10 keV
and higher. Third generation synchrotron, and XFEL sources provide coherent
stimulation of these transitions, and this combination has brought quantum optics
to the hard X-ray domain.

Nuclei in solid state environments are particularly suitable for quantum optical
control due to the Mössbauer effect. As the recoil energy of isomeric transitions lies
below the phonon band-gap of the surrounding crystal, the nuclei emit and absorb
light elastically, with zero recoil. Thus, Mössbauer nuclei do not have the challenges
of Doppler broadening that can often plague quantum optics in the visible spectrum.

The high energies of the nuclear isomeric transitions also mean there is essen-
tially zero thermal noise to consider. For example, a quick calculation using the
black-body spectrum gives the integrated thermal photon number density above
10 keV to be hundreds of orders of magnitude smaller than 1 m−3 at any experi-
mentally relevant temperature. Thus, if techniques for efficient generation, switch-
ing and measurement of entangled X-ray states could be developed, they would
present an ideal platform for quantum communication. Finally, the fact that the
nuclei are embedded in a solid state environment allows for a great degree of con-
trol of their spatial structure, down to the nanometre scale.

Using forward scattering in thin foils enriched with Mössbauer nuclei, Kocharov-
skaya et al. have demonstrated numerous quantum optical and optomechanical phe-
nomena, such as coherent pulse shaping [23], electromagnetically induced trans-
parency [24], acoustically induced transparency [25], optical control of the hyper-
fine spectrum [26], and have recently proposed an X-ray quantum memory de-
vice [27].

For control over the optical environment, it has been shown that placing Möss-
bauer nuclei in thin film nanostructures provides the analogue of atoms in an optical
cavity. High atomic number (Z) materials deflect X-rays stronger than low Z mate-
rials, and form the capping layers. Low Z materials are used as filler, and thin layers
of resonant nuclei placed in the middle act as the ‘atoms’. At grazing incidence, this
acts analogously to atoms placed between the mirrors of a Fabry-Pérot resonator.

Multiple layers can be coupled together, and their scattered fields used as ‘con-
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trol fields’, allowing one to implement multiple source models from quantum op-
tics in the X-ray domain. Using this model, cavities exhibiting a diverse range of
quantum optical phenomena have been developed both experimentally and theo-
retically. These include Rabi oscillations [28], slow light and coherent population
trapping [29], EIT [30], spontaneously generated coherences [31], coherent pulse
shaping [32], Fano resonances and interferometry [33], subluminal pulse propaga-
tion [34], optomechanical coupling [35], and more.

On the collective side, super-radiance has been shown to be significant in both
forward scattering off of bulk foils, and grazing incidence scattering off of thin films.
In nuclear forward scattering, the collective emission and absorption of Mössbauer
nuclei results in pronounced collective Rabi oscillations, while at grazing incidence,
the high collimation of synchrotron radiation results in a single Fourier mode of
the thin-film stack being excited. As such, thin-films grazing incidence scattering is
described by the single mode Dicke model, and the resulting collective effects play
a large role. This was demonstrated clearly in 2010 by an experiment of Röhls-
berger et al. [36], who measured a collective Lamb shift, and in addition significant
collective broadening of such a system, on the order of 61 times the natural line-
width. A 2018 experiment at the SACLA XFEL by Chumakov et al. measured
the multi-photon statistics of the forward scattering from a foil target, providing
the first direct experimental verification of the photon decay statistics of the Dicke
model [37]. The interplay between Dicke super-radiance and hyperfine interac-
tions has been shown to lead to anomalous spectra with exceptional points [38],
and it has been demonstrated that the combination of angle of incidence control as
well as cavity design can result in a large range of coupling regimes [39, 40].

Now that we have seen the advantages and successes of X-ray quantum optics,
we will turn our attention to the current limitations, and how we will address some
of these in this thesis. Specifically, we will focus on two topics:
A: understanding the limitations of the approximations used to model the thin-
film nanostructures as single mode cavities, and the nuclei within as identical emit-
ters.
B: investigating the viability of, and developing a theoretical model for waveg-
uide QED with Mössbauer nuclei, and demonstrating that it may be used for novel
methods of X-ray control.

Limitations of X-ray quantum optics, and how we will address them

Compared to the visible wavelengths, working with Mössbauer nuclei in thin-film
cavities poses new challenges, both experimental and theoretical. For both the single
mode cavity picture, and Dicke super-radiance picture of thin-film nanostructures,
it is important that the incident field excites a single Fourier mode. For this to be
valid, the angular width of the incident beam must be narrower than the resonance
being driven. On the other hand, the resonances of thin-film nano-structures can
be incredibly narrow, on the order of ten µrad in angular width, while the incident
beams used for Mössbauer grazing incidence experiments are configured for angu-
lar divergences from 20µrad to 200µrad at the ID18 beam-line at ESRF 1, and
approximately 60µrad or more at the P01 beam-line at PETRA III 2. As such, for
the first part of topic A, we investigate the effect of beam divergence on the experi-
mentally measured spectra, and the validity of the single mode approximation. We

1Parameters for ID18 at ESRF, November 2018, beam-time ID HC-4028
2Parameters for P01 at PETRA III, August 2020, beam-time ID 11008029
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find that divergences on the order of 5µrad can be treated as single modes, but at
larger beam divergences the spectrum is substantially broadened and distorted. This
could result in erroneous conclusions for the spatial structure and hyperfine param-
eters of the thin film being measured, and thus is crucial to consider in theoretical
predictions.

The other approximation used, in particular to model the nuclei as obeying
Dicke model dynamics, is that the nuclei are identical, with no inhomogeneous
broadening. As the thin-films are formed through a sputter deposition process, the
resonant layer is polycrystalline, and thus a random distribution of hyperfine pa-
rameters is present, and thus we cannot treat the nuclei as identical in general. This
is relevant not only to the X-ray regime, as atomic systems also have many sources
of inhomogeneous broadening, i.e. Doppler broadening, background electric and
magnetic field gradients. However, for nuclei, this broadening is small compared to
the collective coupling strength, and we do not expect this effect to ruin the Dicke
model dynamics entirely. Thus, the second focus of topic A is to develop a model
for Dicke model dynamics in the presence of small inhomogeneities, and derive an-
alytic expressions for the resultant spectra. We show that the collective Lamb shift
can be used to overcome inhomogeneous broadening, and in the limit of strong
collective coupling the spectrum tends toward a single line, with only super-radiant
broadening in the line-width.

The biggest experimental challenge, however, is in the driving fields. Although
synchrotrons are incredibly narrowband, down to the order of 10−4 of their fre-
quency, their bandwidth is still large compared to Mössbauer transitions, which have
a bandwidth on the order of 10−12 times their frequency. As such, even the most
brilliant synchrotron sources still have only a few resonant photons per shot, putting
Mössbauer quantum optics firmly in the linear regime. This situation has improved
with the introduction of XFEL sources, which have on the order of hundreds of
resonant photons per shot, and with diamond cavities for seeding [23, 41, 42], this
could rise by orders of magnitude still. The other challenge is that due to the in-
credibly large size of the sources, and the limited availability of passive optics in the
X-ray regime, experiments are largely limited to either single sources, or must use
methods such as optomechanical coupling mechanisms [23, 32] for pulse shaping.
This connects us back to topic B; waveguides support multiple modes, and it is pos-
sible to excite these simultaneously with a single incident beam. Thus, let us now
turn our attention to the waveguide QED of Mössbauer nuclei.

Waveguide QED of X-rays

A field that has been relatively neglected in comparison to nuclear forward scattering
and grazing incidence, is X-ray quantum optics in the waveguide regime. It is our
view however, that some key limitations of current approaches can be addressed
in the waveguide regime, and thus the focus of this thesis is to develop theoretical
models for the use of Mössbauer nuclei in waveguide structures for the narrowband
control of X-rays.

So far, tapered and channelled X-ray waveguides have been studied, and shown
to be powerful options for focusing and guiding, down to the nanometre scale [43–
49]. Used as guides for synchrotron radiation, [50–54] they have been success-
fully used as point-like hard x-ray sources for imaging, in particular for holograph-
ical imaging [55]. A recent proposal for embedding Mössbauer nuclei in tapered
waveguides has showing the potential for reaching inversion of the isomeric tran-
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sitions [56]. On the other hand, the excitation of Mössbauer nuclei embedded in
tapered and channelled waveguides have not yet been experimentally demonstrated,
and we shall instead turn our attention to thin-film nanostructures. Because of their
use in grazing incidence experiments, their design, fabrication, and control is well
understood and validated. Additionally, recent exploratory work has demonstrated
the viability of directly driving guided modes in such thin-films with synchrotron
radiation, and coupling to Mössbauer nuclei within the film [57].

Although thin-film nano-structures act as slab waveguides, as mentioned pre-
viously, a well collimated incoming beam at grazing incidence only excites a single
Fourier mode, acting as a cavity, which severely restricts the implementation of
models that require multiple modes, or effects that result from radiation into a con-
tinuum. This also restricts their spatial structure to effectively one dimensional, and
rules out higher dimensional geometric effects.

In this thesis, we derive a theoretical description for the front coupling of thin-
film nanostructures, beginning ab initio with the Grüner-Welsch quantization of
macroscopic quantum electrodynamics. This allows us to derive generic Maxwell-
Bloch equations for the X-ray – nucleus interaction, in terms of the dyadic Green’s
functions of their surrounding nano-structure. We then specialize these equations
for thin-film waveguides, and derive analytic expressions for the guided mode prop-
agation using the complex analytic structure of the Fourier transformed Green’s
function.

We then show that the resultant equations of motion for the single mode regime
are identical in form to nuclear forward scattering, and analogous to the interaction
of atoms coupled to a single waveguide mode, thus demonstrating the equivalence
of the dynamical beat of nuclear forward scattering to collective Rabi oscillations.

We then consider the case of multiple modes coupled to a thin layer of Möss-
bauer nuclei, and demonstrate that the nuclei emit into a collective super-position
of the individual guided modes. We then consider structuring the layer longitu-
dinally into an array of micro-strips, and demonstrate that coupled to two modes,
the resulting interference pattern can be used for selective super-radiance and sub-
radiance. This demonstrates that guided modes can be used for effective two-beam
control techniques, and opens the door for a vast possibility of new methods of nar-
rowband X-ray control via the engineering of collective radiation patterns.
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Outline

We begin in Chapter 2 with an overview of nuclear isomeric transitions, the Möss-
bauer effect, and how coherent X-ray sources are used to populate nuclear isomeric
states. We then discuss the collective interactions present in Mössbauer quantum
optics. Finally, we introduce the three experimental geometries that will be consid-
ered in this work. These are bulk foil nuclear forward scattering, thin film grazing
incidence, and thin film front coupling.

In Chapter 3, we give an overview of Grüner-Welsch quantized macroscopic
QED. This quantizes the macroscopic Maxwell’s equations using the dyadic Green’s
functions of the medium. This forms the basis of our theoretical description.

In Chapter 4, we introduce the well known analytic solution for the Green’s
function of slab waveguides, and discuss the spectral properties of its Fourier trans-
form. This encodes the resonances, and hence guided modes of the waveguide,
and allows us to obtain analytic expressions for the guided mode contribution to the
Green’s function.

In Chapter 5, we define the nuclear Hamiltonian and Lindblad super-operators,
the nuclear-magnetic dipole interaction Hamiltonian, and give an overview of the
hyperfine interactions present. We then use these in Chapter 6 to derive the equa-
tions of motion for general interactions between Mössbauer nuclei and electro-
magnetic fields in linear media. In Section 6.1 we derive the nuclear isomeric
Bloch equations, while in Section 6.2 we show that the field obeys the macroscopic
Maxwell’s equations, with the fields promoted to operators, and we specialize the
Kirchoff integral for the three experimental geometries, to obtain expressions for
the incident field in terms of its free space expression and the Green’s function of
the X-ray medium. Following this, in Section 6.3 we discuss the effects of disper-
sion, and the rotating wave approximation. We show that the rotating wave approx-
imation remains valid as long as it is performed after obtaining the Fourier space
equation of motion for the field. However, dispersive effects cannot be neglected in
general, and are shown to lead to non-Markovian dynamics.

Armed with the equations of motion, we proceed to specialize them in our two
areas of focus: grazing incidence in Chapter 7, and front coupling in Chapter 8. In
Chapter 7, we consider two inhomogeneities for grazing incidence geometry, that
arise in realistic experimental conditions: angular divergence and inhomogeneous
broadening. Firstly, in Section 7.1 we show that although the beam divergence
at synchrotrons is approximately the angular width of a guided mode resonance,
the beam can nevertheless be considered well collimated and single mode. On the
other hand, we show that angular instabilities can result in far more dramatic effects,
with distortions of the measured spectra and erroneous conclusions for the sample
structure and hyperfine parameters. Secondly, in Section 7.2 we show that in the
presence of inhomogeneous hyperfine interactions, the collective interaction cannot
be considered as an overall frequency shift and broadening, and the resulting energy
spectra have anomalous line shapes. In particular, we show that in the limit of strong
collective coupling, the effect of inhomogeneous broadening is diminished, and the
line-width tends towards the super-radiant line-width that would be observed in the
absence of inhomogeneity.

In Chapter 8, we consider the equations of motion for guided modes interacting
with Mössbauer nuclei, in the front coupling geometry. We begin in Section 8.1
with a derivation from our Green’s function approach of the existing well known
expressions for nuclear forward scattering. We show that including the effects of
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dispersion introduces the proper retarded time into the solution. This also allows
us to compare the existing approaches of nuclear forward scattering to the Green’s
function model of single mode super-radiance of linear geometries, and show that
they are equivalent, thus demonstrating that the dynamical beat of nuclear forward
scattering, and collective Rabi oscillation [16, 58] of atomic optics, are one and
the same. Next in Section 8.2 we develop forward scattering equations for front
coupled thin film waveguides, and demonstrate that the equation of motion for
each mode resembles that of nuclear forward scattering, with the effective reso-
nant length scaled by the spectral parameters of the modes. We then consider the
equations for multiple modes coupled to a thin layer, and show that super-radiance
and sub-radiance play a large role, with the nuclei emitting collectively into a sin-
gle bright mode. In Section 8.3 we consider in detail the specialization of these
effects to a two mode waveguide, and demonstrate that the interference pattern of
the collective radiation mode allows for selective super-radiance and sub-radiance
via engineering of micro-patterns into the resonant layer. This opens the door for
a vast possibility of new models in X-ray quantum optics, as well as demonstrates
that Mössbauer waveguides are an ideal platform for investigating geometric light
matter interactions.

Finally, in Chapter 9 we give our concluding remarks, and an outlook for future
research in the Green’s function formalism, inhomogeneous Dicke model dynam-
ics, and waveguide X-ray QED.
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Chapter 2

Background

In this chapter, we give a brief overview of quantum optics with Mössbauer nuclei.
We begin in Section 2.1 with an overview of nuclear isomeric states, their hyper-
fine structure, and the Mössbauer effect. We give a brief introduction to modern
synchrotron and X-ray free electron laser (XFEL) X-ray sources and their use in
driving nuclear isomeric transitions in Section 2.1.3.

Following this, in Section 2.2 we give a background to the theoretical models
that are currently used in X-ray quantum optics, as well an overview of Dicke super-
radiance in Section 2.3, which is an important collective effect in Mössbauer optics.

Finally, in Section 2.4, we describe the three experimental configurations of
Mössbauer nuclei that will be considered in this thesis.

2.1 Mössbauer nuclei

First discovered by Rudolf Mössbauer in 1958 [59], the eponymous Mössbauer
effect refers to the recoil-free emission of gamma radiation from nuclei in a solid
state environment.

As with all many-body quantum systems, a nucleus has many possible quan-
tized internal states, referred to as isomeric states. These states correspond to the
different possible meta-stable arrangements of the nucleons, and for the purposes
of Mössbauer transitions the most relevant structural quantities are the nuclear spin
quantum number I , parity 𝜋, magnetic dipole moment `, and electric quadrupole
momentQ.

The nuclear isomeric states have a total angular momentum that is the combi-
nation of the spin angular momentum of the constituent nucleons, and the orbital
angular momentum of their macroscopic arrangement. Thus, different isomeric
states have different total spin. The different internal arrangements of charge and
current also change the electric and magnetic multipole moments of the nucleus,
which are used both to predict the splitting due to hyperfine interactions, and pre-
dict the transition rates between different isomeric states. For these transitions, the
familiar selection rules from atomic optics also hold.

Firstly, one must consider parity. The parity of a state reflects whether it is even
or odd under a point reflection. For many low-lying isomeric states, the parity is
unchanged. Due to the fact that the selection rules for electric dipole transitions
require a change in parity between the initial and final states [60], most Mössbauer

9
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Ie = 3/2 𝛿

Ig = 1/2

14.4 keV

Bhf

me = 3/2
me = 1/2
me = −1/2
me = −3/2

mg = −1/2
mg = 1/2

Bhf

Figure 2.1: The level scheme of 57Fe. The isomer shift 𝛿 shifts all excited states
equally, and is due to a monopole interaction with the local electric field. The addi-
tion of an external magnetic field Bhf results in a hyperfine splitting of the magnetic
sublevels according to their spin projection mg or me on the quantization axis. The
six magnetic dipole transitions are illustrated.

transitions are electric dipole forbidden, and thus the lowest order multipole tran-
sition is due to magnetic dipole coupling. For these, the selection rules require that
the change in spin quantum number obeysΔI = 0, ±1, and no parity change [60]. In
addition to magnetic dipole transitions, electric quadrupole transitions play a small
role, put as they are much smaller in transition rate, we will not consider them in
this work, except when accounting for the spontaneous decay rate of the nuclear
transitions.

2.1.1 Hyperfine structure

The isomeric states have a hyperfine structure, Figure 2.1, which are split by in-
teractions between the nucleus and its local electronic environment. These can be
expressed in terms of interactions between the local electric and magnetic fields with
the electric and magnetic multipole moments of the isomeric level. The most sig-
nificant of these are the isomer shift, the magnetic dipole splitting, and the electric
quadrupole splitting, all of which will be discussed in detail in Section 5.4. These
provide an incredibly sensitive probe of the local electronic structure, and is used to
non-destructively identify metallurgical structures, as well as investigate the chem-
ical structure of iron containing molecules, including haemoglobin.

2.1.2 Recoil and the Mössbauer effect

Transition energies between the isomeric states lie in the gamma ray range, and as
with atomic transitions, a nuclear excited state will spontaneously decay to its ground
state. This occurs through gamma radiation, as well as internal conversion. In in-
ternal conversion, an inner-shell electron is excited by the nuclear transition, and is
ionized. In both the gamma and internal conversion decay channels, there must be
recoil to balance the resultant change of momentum. Thus, in general, some por-
tion of the transition energy is taken up by the kinetic energy of this recoil, Doppler
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shifting the emitted photon in the case of gamma radiation. There is a continuum
of possible Doppler shifts, resulting in Doppler broadening of the resulting spec-
trum. This is problematic for spectroscopic purposes, as this broadening makes the
hyperfine structure completely unresolvable.

Reprinted from Physics Letters, Volume 69A, number 6, H. Weiss, H.
Langhoff, Observation of one phonon transitions in terbium by nuclear
resonance fluorescence, 448-450, Copyright (1979), with permission
from Elsevier.

Figure 2.2: Fluorescence spectrum of the 58 keV isomeric transition in crystalline
159Tb [61]. Note the broad Doppler shifted bands, corresponding to transitions
coupled to one phonon, W1, or multiple, Wn. A sharp Mössbauer peak is also
present,W0, corresponding to recoil energies below the phonon gap.

For a nucleus embedded in a solid, any recoil motion relative to the crystal lattice
is quantized as phonons. The phononic spectrum of a crystal is gapped, and there-
fore any recoil energy below this gap will not result in a phononic vibration. Rather,
the recoil energy is taken up by the kinetic motion of the entire solid uniformly.
Due to the immensely larger mass of the solid compared to an individual nucleus,
the resultant Doppler velocity is suppressed by a factor of Avogadro’s number, and
is effectively zero. It is this effect that Mössbauer first measured in 1958, and it is
the key reason for the viability of Mössbauer spectroscopy.

The recoil free fraction of transitions is referred to as the ‘Lamb-Mössbauer
factor’, fLM . It is dependent on both the chemical structure and temperature of a
sample, but can be estimated using a Debye model for the phononic modes.

2.1.3 Populating the isomeric states

Due to the large transition energies, populating the excited isomeric states is chal-
lenging. The initial method used was radioactive decay. The archetypical example
of this is the use of 57Co, which decays via electron capture to 57Fe. The resul-
tant 57Fe is in an excited state, and will emit a cascade of gamma rays. The final
gamma in the cascade is from the 14.4 keV transition, which is used for Mössbauer
spectroscopy.

The drawback of this method is that it requires radioactive sources, and that the
cobalt source has a different electronic structure to iron, making it impractical for
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use in experiments requiring ionic iron.
On the other hand, the development of high brilliance synchrotron and XFEL

sources has resulted in the widespread use of direct gamma ray excitation of the de-
sired transitions. These sources generate gamma radiation via the Bremsstrahlung
of electrons, that is, the radiation emitted by an accelerating charge.

This is achieved using undulators, periodic arrangements of alternating mag-
netic fields. An electron beam entering an undulator is forced into sinusoidal trans-
verse motion, producing intense Bremsstrahlung as it reaches peak displacement.
This radiation is highly collimated, and directed along the beam axis, with an on-
axis fundamental wavelength of

_ =
_u

2𝛾2

(︃
1 + K

2

2

)︃
, (2.1)

where _u is the undulator magnet spacing, 𝛾 the Lorentz factor of the electron beam,
and the dimensionless undulator deflection parameter is given by

K =
eBu_u
2𝜋mec

, (2.2)

with Bu the undulator magnetic field, and me the electron mass. In addition to the
fundamental wavelength, harmonics are produced, with the odd harmonics directed
along the beam axis.

Author of image: Bastian Holst
Source: https://commons.wikimedia.org/wiki/File:Undulator.png
Copyright: CC BY-SA 3.0

Figure 2.3: Working principle of an undulator. High power magnets of alternating
polarity (1) are placed at intervals of length _u. An incident electron beam (2) is
forced into transverse sinusoidal motion, emitting highly collimated on-axis radia-
tion at maximum deflection (3).

The dependence of the fundamental wavelength on both the electron beam ve-
locity and undulator magnetic field strength allows for tuning to a wide range of
X-ray energies, allowing for high brilliance in a relatively narrow band around a
desired wavelength.

In a synchrotron, the electron beam is accelerated in a circular storage ring. At
certain locations in the ring undulators are placed, providing the X-ray source for
the beam-lines.
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In contrast, an XFEL uses a linear accelerator, with undulators lining the en-
tire beam-line. The emitted radiation from an electron in the beam, travelling at c,
will ‘overtake’ the beam, and therefore interact with electrons further ahead in the
beam. This causes electrons slightly further ahead than a resonant wavelength _

to be decelerated, and electrons slightly further behind to be accelerated, creating
bunches spaced a distance _ apart. As a result, the emitted radiation of the elec-
tron bunches is in phase with the radiation of the previous bunches, resulting in the
coherent enhancement of the beam intensity. The result is a beam of substantially
lower bandwidth, and higher peak brilliance than a synchrotron source.

2.2 Theoretical approaches

2.2.1 Scattering models

The earliest theoretical models of Mössbauer optics focused on multiple scattering
descriptions of single photon propagation through a crystalline sample. This was
developed in great detail by Hannon and Trammel [62–66], as well as Kagan et
al. [67–69]. In this approach, the nuclei are modelled via their linear susceptibil-
ity, as a contribution to the single photon scattering amplitudes of a crystal. This
method was employed in frequency domain by Kagan et al. [68] to derive the ana-
lytic expression for the delayed response of nuclear forward scattering, which we will
discuss in Section 2.4.1. Using the Fourier inversion of the nuclear susceptibility,
Shvyd’ko obtained time domain equations of motion for forward scattering [70],
and also modelled phenomena such as magnetic switching of the nuclear hyper-
fine interactions for photon storage [71]. Sturhahn and Kohn further extended the
scattering description to include incoherent scattering processes [72].

The primary limitation of this approach is that it is expressed in terms of Feyn-
man diagrams for the photon propagator, with the nuclei modelled via their linear
susceptibilities. As such, the underlying level schemes and collective interactions
between nuclei are modelled implicitly rather than explicitly, which is undesirable
when developing a qualitative picture of the underlying quantum optical phenom-
ena. With the advent of XFEL sources, ultra-narrowband sources, capable of in-
verting the isomeric transitions could be in reach. With such strong excitation, the
response of the nuclei is no longer linear, posing new challenges for their theoretical
description. A Feynman diagram approach is far less useful in this regime, due to
the fact that as composite structures, the isomeric states obey the ‘mixed’ statistics
of atomic transitions rather than the Bosonic or Fermionic statistics of fundamen-
tal particles. As such, Wicks theorem does not hold in its usual form, leading to
an exponential increase in the number of Feynman diagrams to consider at each
scattering order.

Due to these factors, it is desirable to use a fully quantum optical mode to de-
scribe the nucleus-photon interaction, and we will now proceed to give an overview
of the existing approaches.

2.2.2 Quantum optical models

To address the cavity-like aspects of grazing incidence thin-film nanostructures,
Heeg developed a phenomenological model for describing thin film structures from
a cavity QED point of view [73]. This model takes into account the collective be-
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haviour of the nuclei by employing the single mode Dicke model. Due to its phe-
nomenological nature, the coupling parameters for Heeg’s model have to be de-
termined by curve fitting either to an experimental spectrum, or to a numerical
simulation of the linear response of the cavity. Due to this limitation, Lentrodt et
al. [74] as well as Kong et al. [75], have instead successfully used a dipole-dipole
formalism developed by Dung et al. [76] to model the cavity system. This for-
malism has been widely used in visible optics, and models the cavity field as an
effective interaction potential between the nuclear layers, which can be obtained
from the dyadic Green’s function of the macroscopic Maxwell’s equations for the
cavity. This is particularly advantageous for thin films, as explicit analytic expres-
sions for the Green’s function are known, and numerically efficient. Diekmann et
al. [40] have further developed this into a few-mode model by curve-fitting poles
to the Fourier transformed Green’s function, thus providing an ab initio method of
obtaining the coupling parameters for Heeg’s phenomenological model.

However, for our purposes, we desire analytic expressions for the equations of
motion of the guided modes, as well as a complex analytic method of finding the
spectral parameters such as mode locations, radiation modes etc. In addition, the
coupled dipole-dipole model assumes the waveguide is non-dispersive, and thus
neglects the effects of time delay due to the mode propagation. This is a good ap-
proximation to make at grazing incidence, where a single Fourier mode is excited,
however as we are considering propagating modes explicitly, it is not at all clear if
this is valid in the waveguide regime.

Because of these limitations, we will work ab initio from the Grüner-Welsch
quantization of the macroscopic Maxwell’s equations [77], which is presented in
Chapter 3. This method treats the linear, lossy macroscopic medium as a bosonic
noise field. Because of this, the electric and magnetic displacement fields obey
bosonic statistics, and thus one can proceed with canonical quantization of the macro-
scopic Maxwell’s equations. The resulting expressions then give the electromagnetic
field and their commutators in terms of the dyadic Green’s function of the medium.
This forms the basis of the coupled dipole-dipole formalism of Dung et al. [76],
which makes the further assumption that the medium is non-dispersive and adia-
batically eliminates the electromagnetic field. As mentioned previously, we will not
be making this approximation, and we instead explicitly model the field throughout.

2.3 Collective radiation and super-radiance

As discussed in Chapter 1, collective emission and absorption plays a large role
in the interaction of Mössbauer nuclei and the electromagnetic field. Synchrotron
radiation is well collimated, and thus large ensembles of nuclei are uniformly il-
luminated. This creates the conditions for super-radiant absorption and emission,
which we shall now discuss.

2.3.1 Dicke super-radiance

In his seminal 1954 paper [12], Dicke demonstrated that an ensemble of identi-
cal atoms interacting with light of wavelength much larger than the ensemble size,
would absorb and emit radiation collectively. He showed that the atoms would emit
and absorb in phase and coherently, resulting in N such atoms having a factor of N
speed up in their spontaneous emission rate compared to their single particle value.
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While Dicke’s original work considered primarily the long wavelength condition
for super-radiance, it is not a necessity. Indeed, the key physical requirement is per-
mutation invariance: any two atoms must be able to have their locations swapped
without experiencing a different field amplitude. Thus, one can achieve super-
radiance in other schemes. One such method is to place the atoms periodically in a
single mode cavity, spaced an integer multiple of the mode wavelength apart. Then,
due to periodicity, the illumination will be uniform, and the atoms super-radiantly
driven.

Super-radiance is also achieved in ‘pencil’ geometries, as well as waveguides.
Here, the atoms are placed in a linear arrangement, and driven by a pulsed exci-
tation. Uniform illumination is achieved through a large envelope compared to the
ensemble size. In these geometries, translational symmetry plays the role of permu-
tation invariance, allowing for super-radiance without restrictions on the wavelength
in relation to the ensemble size.

2.3.2 Radiation modes and sub-radiance

The classic Dicke picture of super-radiance deals with only a single unidirectional
electromagnetic mode. However, in free space, one must consider the full contin-
uum of electromagnetic modes, particularly the full directionality of these modes.

In such scenarios, it has been shown that the exchange of resonant photons be-
tween atoms leads to a dipole-dipole interaction, described by the electromagnetic
dyadic Green’s function

←→
G , with the non-Hermitian effective potential given by

V̂ dd =
k2
0

𝜖0

∑︁
i , j

p̂i ·
←→
G (r⃗ i , r⃗ j , 𝜔0) · p̂†j , (2.3)

where p⃗i the transition dipole operator of the ith atom, r⃗ i its position, and 𝜔0 the
transition frequency. The dyadic Green’s function and its derivation will be dis-
cussed in detail in Chapter 3.

The ensemble radiates collectively through the eigenmodes of this potential,
with the complex eigenvalue of each mode describing its frequency shift and decay
rate via the real and imaginary parts respectively. The magnitude of the imaginary
part of the main diagonal of the potential gives the single particle decay rate of each
atom [78, eq. 8.115],

𝛾i =
k2
0

𝜖0
p⃗i · Im{

←→
G (r⃗ i , r⃗ i , , 𝜔0)} · p⃗

∗
i , (2.4)

where p⃗i denotes the vector magnitude of the transition dipole operator. Thus, for
indistinguishable atoms, we must have∑︁

n

Im{_n} = N𝛾0 , (2.5)

where _n is the nth radiation eigenvalue, 𝛾0 the uniform single particle decay rate,
and N the number of atoms. In addition, the imaginary part of V̂ dd is a positive
semi-definite operator, and thus Im{_ } ≥ 0 for each eigenvalue.

We can see that this implies the existence of sub-radiance: for every super-radiant
mode, that decays faster than 𝛾0, there must be at least one mode that decays slower
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than 𝛾0. In such modes, rather than the emitted radiation from different atoms
constructively interfering, the atoms emit out of phase, and destructively interfere,
trapping the excitation within the ensemble. While hard to prepare experimentally,
such states are highly desirable due to the prospects of radiation with very narrow
line-widths.
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2.4 Experimental schemes

2.4.1 Nuclear forward scattering

Figure 2.4: Experimental geometry of nuclear forward scattering. A well collimated
beam at normal incidence illuminates a thin foil containing resonant nuclei. The
transmitted field is measured, while back-reflection is minimal due to the extremely
high frequency of the incident radiation.

In nuclear forward scattering, Figure 2.4, a thin foil enriched with resonant nu-
clei is used as the target, with the beam arriving at normal incidence. Nuclei further
ahead in the target are not just driven directly by the incident beam, but also interact
with the scattered field of nuclei behind them. The result is an interference pattern
known as the dynamical beat, with the scattered field described by [68, 79]

Esc (t) ∝ e−i (𝜔0−i 𝛾2 )t
J1 (
√
Ωt)

√
Ωt

, (2.6)

where 𝜔0 , 𝛾 are the transition frequency and decay rate, J1 is a Bessel function of
the first kind,

Ω = 𝛾𝜎0 𝜌NL (2.7)

is the dynamical beat frequency, 𝜌N the number density of resonant nuclei, L the
foil thickness, and

𝜎0 =
2𝜋

k2
0

· fLM
1 + 𝛼 ·

2Ie + 1
2Ig + 1

(2.8)

is the nuclear scattering cross-section [79].
For short times, the scattered response envelope is approximately exponential,

J1 (
√
Ωt)

√
Ωt

≈ e−
𝛾

2Te f f t , 𝛾tTe f f ≤ 3, (2.9)

where

Te f f =
𝜎0 𝜌NL

4
=

Ω

4𝛾
(2.10)
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is the ‘effective resonant thickness’ of the sample. Thus, for short times the sample
is super-radiant, with an enhancement of the decay-rate given by the effect resonant
thickness.

2.4.2 Grazing incidence thin-film scattering

Figure 2.5: Experimental geometry of grazing incidence thin-film scattering. A
well collimated beam incident at a very small angle illuminates a multi-layer con-
taining resonant nuclei. Due to translational symmetry, the planar wave-vector is
conserved, exciting a single Fourier mode. The layer is nano-structured, creating
a ‘cavity’ in the transverse direction z. Both the reflected and transmitted compo-
nents can be measured.

In grazing incidence scattering, Figure 2.5, the target is a thin film multi-layer
structure. Layers of varying atomic number Z are placed in nanometre scale layers,
with layers of high Z deflecting X-rays stronger than layers of low Z. This allows for
the creation of resonance structures, with high Z capping layers and a low Z filler.

For a plane wave incident at a small angle of incidence (on the order of millira-
dians), the transverse component of the wave-vector will be of a similar magnitude
to the thin-film layer depths. As such, the thin-film structure acts as a ‘cavity’ for
the plane wave, and the angle of incidence can be adjusted to drive a resonance of
the ‘cavity’ mode structure.

If a thin film of resonant nuclei is placed at the maximum of one of these cavity
modes, due to the plane wave driving, the nuclei are uniformly illuminated, and
thus are super-radiant.
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2.4.3 Thin-film front coupling

Figure 2.6: Experimental geometry of front coupling thin-film scattering. Trans-
lational symmetry is broken at the interface, and thus the planar wave-vector is
not conserved. The layer is nano-structured, creating a waveguide, and the guided
modes are excited by the input beam directly.

In thin-film front coupling, Figure 2.6, the same type of multi-layer structure
as grazing incidence is used. However, the incident light is now coupled directly
parallel with the layer planes, such that it enters from the side of the thin-film slab.

This allows for the use of thicker capping layers for greater field confinement,
without reducing the in-coupling strength as would occur in grazing incidence.

In Chapter 8 we will derive the equations of motion for front coupling, and
demonstrate that it shares features from both conventional nuclear forward scatter-
ing and grazing incidence. The resonance structure from grazing incidence appears
as the collection of guided modes that can be excited by the incident beam. The
guided modes themselves display the same dynamical beat phenomenon as nuclear
forward scattering,
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Chapter 3

Macroscopic QED of
multi-layers

In this chapter, we introduce the theoretical description of the electromagnetic field
in multi-layered dielectric media. We begin by reviewing the macroscopic formu-
lation of Maxwell’s equations, and their formal solution in terms of dyadic Green’s
functions. Following this, we introduce the Grüner-Welsch [77] quantization of
macroscopic QED, which uses the dyadic Green’s functions of the medium to de-
fine the second quantized medium-assisted electromagnetic field. This method is
particularly suitable for planar layered media, as analytic expressions for the dyadic
Green’s functions are well known [80–83]. We will review their derivation in Chap-
ter 4.

Finally, we give an overview of the Kirchoff’s integral formula for the electro-
magnetic field, and how it allows us to obtain the input field in a medium from
a given free space solution of Maxwell’s equations, using the Green’s functions of
the media. We will use this in Chapter 6 to evaluate the input fields for the three
experimental configurations introduced in Chapter 2: grazing incidence, forward
scattering, and waveguide front coupling.

3.1 Maxwell’s equations in macroscopic media

In a macroscopic medium, instead of working with the fundamental fields E⃗ , B⃗,
and electric and magnetic dipole sources P⃗ , M⃗ directly, one may instead work with
the so-called ‘electric displacement’ field D⃗, and ‘magnetizing field’ H⃗ , which are
defined via the constitutive relations

D⃗(r⃗ , t) = Y0E⃗(r⃗ , t) + P⃗ (r⃗ , t) , (3.1)

H⃗ (r⃗ , t) = 1
`0
B⃗(r⃗ , t) − M⃗ (r⃗ , t). (3.2)

21
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The fields obey the macroscopic Maxwell’s equations [82–84],

∇ · D⃗(r⃗ , t) = 𝜌e (r⃗ , t) , (3.3)

∇ · B⃗(r⃗ , t) = 𝜌m (r⃗ , t) , (3.4)

∇ × E⃗(r⃗ , t) = − j⃗m (r⃗ , t) − 𝜕tB⃗(r⃗ , t) , (3.5)

∇ × H⃗ (r⃗ , t) = j⃗e (r⃗ , t) + 𝜕tD⃗(r⃗ , t) , (3.6)

with free electric charge and current densities 𝜌e , j⃗e measured in Coulombs and
Amperes, respectively, and free magnetic charge and current densities 𝜌m , j⃗m mea-
sured in Webers and Volts, respectively. So far, magnetic charges have never been
observed in nature. Nevertheless, keeping in fictitious magnetic charges makes
Maxwell’s equations invariant under duality transformations [82, 83],(︃

𝜌e
𝜌m

)︃
→ R(\)

(︃
𝜌e
𝜌m

)︃
, (3.7)(︄

j⃗e
j⃗m

)︄
→ R(\)

(︄
j⃗e
j⃗m

)︄
, (3.8)(︄

E⃗
H⃗

)︄
→ R(\)

(︄
E⃗
H⃗

)︄
, (3.9)(︄

D⃗
B⃗

)︄
→ R(\)

(︄
D⃗
B⃗

)︄
, (3.10)

R(\) =
(︃
cos \ − sin \

sin \ cos \

)︃
. (3.11)

This is particularly useful in situations with no free charges, 𝜌e , 𝜌m , j⃗e , j⃗m = 0, as
we can see that the duality transformation then holds exactly. In any case, as we
shall see, finding the dyadic Green’s function can be done using arbitrary choices
of electric or magnetic sources, and as such, we will continue using the fictitious
magnetic sources.

Taking a temporal Fourier transform of (3.3) through (3.6) gives

∇ · D⃗(r⃗ , 𝜔) = 𝜌e (r⃗ , 𝜔) , (3.12)

∇ · B⃗(r⃗ , 𝜔) = 𝜌m (r⃗ , 𝜔) , (3.13)

∇ × E⃗(r⃗ , 𝜔) = − j⃗m (r⃗ , 𝜔) + i𝜔B⃗(r⃗ , 𝜔) , (3.14)

∇ × H⃗ (r⃗ , 𝜔) = j⃗e (r⃗ , 𝜔) − i𝜔D⃗(r⃗ , 𝜔) , (3.15)

where we have distinguished the time and frequency domain forms of a function by
its arguments. Our choice of Fourier conventions is summarized in Appendix C.1.

In a linear medium, the electric and magnetic dipole fields can be obtained from
the fundamental fields via susceptibility dyads,

P⃗ (r⃗ , 𝜔) = Y0
←→
𝜒 e (r⃗ , 𝜔) · E⃗(r⃗ , 𝜔) , (3.16)

M⃗ (r⃗ , 𝜔) = 1
`0

←→
𝜒 m (r⃗ , 𝜔) · B⃗(r⃗ , 𝜔). (3.17)
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In an isotropic medium, the susceptibilities are diagonal and rotationally symmet-
ric, and thus can be taken to be scalar. For hard X-ray scattering the magnetic
scattering is negligible, and we will therefore take 𝜒m = 0. In principle, the electric
susceptibility is not isotropic, as it is highly sensitive to the crystal structure of the
medium due to Bragg scattering. However, for thin films formed through sputter
deposition, which are the experimental realization of the systems we consider, the
samples are polycrystalline and highly disordered. The bulk electric susceptibility
is therefore the disorder average of the individual crystal grains susceptibility, and
is thus isotropic, and homogeneous within a particular medium. We will therefore
take 𝜒e to be scalar. In addition, the dipole responses must be causal. In frequency
domain, this is enforced by Kramers-Kronig consistency,

Re( 𝜒_ (r⃗ , 𝜔)) =
1
𝜋
P

∫
d𝜔′

Im( 𝜒_ (r⃗ , 𝜔′))
𝜔′ − 𝜔 , (3.18)

Im( 𝜒_ (r⃗ , 𝜔)) = −
1
𝜋
P

∫
d𝜔′

Re( 𝜒_ (r⃗ , 𝜔′))
𝜔′ − 𝜔 , (3.19)

where P denotes the Cauchy principal value, and _ = e, m. Substituting (3.16) ,
(3.17) into (3.1) and (3.2) gives [82]

D⃗(r⃗ , 𝜔) = Y0Y (r⃗ , 𝜔)E⃗(r⃗ , 𝜔) , (3.20)

H⃗ (r⃗ , 𝜔) = 1
`0 `(r⃗ , 𝜔)

B⃗(r⃗ , 𝜔) , (3.21)

`(r⃗ , 𝜔) = 1
1 − 𝜒m (r⃗ , 𝜔)

, (3.22)

Y (r⃗ , 𝜔) = 1 + 𝜒e (r⃗ , 𝜔). (3.23)

One can then use (3.12) through (3.15) , combined with (3.20) through (3.23)
to show [83, eq. 1.21, 1.22] [82, p. 2.149]

`∇ × `−1∇ × E⃗ − n2𝜔
2

c2
E⃗ = i𝜔`0 ` j⃗e − `∇ × `−1 j⃗m , (3.24)

Y∇ × Y−1∇ × H⃗ − n2𝜔
2

c2
H⃗ = i𝜔Y0Y j⃗m + Y∇ × Y−1 j⃗e (3.25)

where we have defined the refractive index

n(r⃗ , 𝜔) =
√︁
`(r⃗ , 𝜔)Y (r⃗ , 𝜔). (3.26)

The solutions are then given in terms of dyadic Green’s functions as

E⃗(r⃗ , 𝜔) =
∫

d3r ′
←→
G e (r⃗ , r⃗ ′ , 𝜔) · i⃗e (r⃗ ′ , 𝜔) , (3.27)

H⃗ (r⃗ , 𝜔) =
∫

d3r ′
←→
Gm (r⃗ , r⃗ ′ , 𝜔) · i⃗m (r⃗ ′ , 𝜔) (3.28)

where

ie (r⃗ , 𝜔) = i𝜔`0 j⃗e − ∇ × `−1 j⃗m , (3.29)

im (r⃗ , 𝜔) = i𝜔Y0 j⃗m + ∇ × Y−1 j⃗e , (3.30)

(∇ × `−1∇ × −𝜔
2

c2
Y)←→G e (r⃗ , r⃗ ′ , 𝜔) = 𝛿3 (r⃗ − r⃗ ′) , (3.31)

(∇ × Y−1∇ × −𝜔
2

c2
`)←→Gm (r⃗ , r⃗ ′ , 𝜔) = 𝛿3 (r⃗ − r⃗ ′). (3.32)
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In defining the sources, (3.29) , (3.30) , we can now see why the fictitious sources
can be used to derive the Green’s function for real sources: a time harmonic elec-
tric current is an equivalent source to the curl of a magnetic current, while a time
harmonic magnetic current is an equivalent source to the curl of an electric current.

Dimensionally, as the relative susceptibilities `, Y are dimensionless, we can see
that the dyadic Green’s functions

←→
G _ , _ = e, m have the dimension of inverse

length. Due to singularities in the Green’s function for r⃗ = r ′⃗ [83], the integrals in
(3.27) , (3.28) should be interpreted in the principle value sense, by excluding an
infinitesimal volume of variable size but fixed shape around the source region, and
taking the limit as this volume shrinks to zero. Written out explicitly, performing
this procedure on (3.27) is then given by

E⃗(r⃗ , 𝜔) = P

∫
d3r ′
←→
G e (r⃗ , r⃗ ′ , 𝜔) · i⃗e (r⃗ ′ , 𝜔) −

←→
L e · i⃗e (r⃗ , 𝜔). (3.33)

Here, Pdenotes the principal value procedure, and
←→
L is the positive semi-definite

‘depolarizing dyadic’ [83], that accounts for the surface boundary terms of the in-
finitesimal exclusion volume [83]. In a nuclear or atomic system, this term con-
tributes to the Lamb shift of the scatterer [81, 83], and as such we can absorb it into
our definition of single particle frequencies. Therefore, we can neglect

←→
L for our

purposes, and implicitly assume that the principal value is performed as needed.

The two Green’s functions
←→
G e ,
←→
Gm are not independent. Their relation can

easily be found by consider purely electric, and purely magnetic sources respec-
tively.

Firstly, for purely magnetic sources, we may take a curl of (3.28) , and use (3.17) ,
(3.23) , (3.28) , (3.29) and (3.30) to write (c.f. [82, eq. 2.204])

∇ × H⃗ = j⃗e − i𝜔D⃗, (3.34)

−
∫

d3r ′ ∇ ×←→Gm (r⃗ , r⃗ ′ , 𝜔) × ∇′ ·
1

Y (r⃗ ′ , 𝜔)
j⃗e (r⃗

′ , 𝜔) = j⃗e (r⃗
′ , 𝜔) (3.35)

− `0Y0Y

𝜔2

∫
d3r ′
←→
G e (r⃗ , r⃗ ′ , 𝜔) · j⃗e (r⃗

′ , 𝜔)

←→
G e =

1
Y (r⃗ , 𝜔)k2

𝛿3 (r⃗ − r⃗ ′) + 1
Y (r⃗ , 𝜔)k∇ ×

←→
Gm × ∇′

1
Y (r⃗ ′ , 𝜔)k

(3.36)

where k = 𝜔c−1.
A dual derivation for the case of purely electric sources shows

←→
Gm =

1
`(r⃗ , 𝜔)k2

𝛿3 (r⃗ − r⃗ ′) + 1
`(r⃗ , 𝜔)k∇ ×

←→
G e × ∇′

1
`(r⃗ ′ , 𝜔)k

. (3.37)

Therefore, we can solve for either the electric or magnetic fields, whichever is sim-
pler, and use (3.36) , (3.37) to obtain the dual. We will from this point work in
terms of the electric Green’s function, and denote it

←→
G ≡ ←→G e , (3.38)

and denote the electric current simply as j⃗, with the magnetic charges and currents
zero, as is physically the case.
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3.1.1 Response from dipole currents

The free current density can be expressed in terms of electric and magnetic multi-
pole density fields, P⃗ , M⃗ . To dipole order, we have

j⃗ (r⃗ , 𝜔) = −i𝜔P⃗ (r⃗ , 𝜔) + ∇ × M⃗ (r⃗ , 𝜔). (3.39)

For a continuous ensemble of scatterers with uniform density, the dipole densities
are found as the product of the polarization fields of the scatterers with the source
number density 𝜌N (r⃗),

P⃗ (r⃗ , 𝜔) = 𝜌N (r⃗) p⃗(r⃗ , 𝜔) , (3.40)

M⃗ (r⃗ , 𝜔) = 𝜌N (r⃗)m⃗(r⃗ , 𝜔) , (3.41)

For point scatterers, we may substitute the density with the point particle density
and polarization operators,

𝜌N (r⃗) →
∑︁
i

𝛿3 (r⃗ − r⃗ i ) , (3.42)

P⃗ (r⃗ , 𝜔) =
∑︁
i

p⃗i (𝜔)𝛿3 (r⃗ − r⃗ i ) , (3.43)

M⃗ (r⃗ , 𝜔) =
∑︁
i

m⃗i (𝜔)𝛿3 (r⃗ − r⃗ i ). (3.44)

We can therefore write the electric field as the sum of the electric and mag-
netic dipole contributions, with their own corresponding Green’s function [82, eq.
2.194],

E⃗(r⃗ , 𝜔) = −P

∫
d3r ′ 𝜌N (r⃗)

1
Y0

←→
G ee (r⃗ , r⃗ ′ , 𝜔) · p̂(r⃗ ′ , 𝜔) (3.45)

−P

∫
d3r ′ 𝜌N (r⃗) `0c

←→
G em (r⃗ , r⃗ ′ , 𝜔) · m̂(r⃗ , 𝜔).

These Green’s functions are defined as [82, eq. 2.198, 2.200]

←→
G ee (r⃗ , r⃗ ′ , 𝜔) =

i𝜔
c
←→
G (r⃗ , r⃗ ′ , 𝜔) i𝜔

c
, (3.46)

←→
G em (r⃗ , r⃗ ′ , 𝜔) =

i𝜔
c
←→
G (r⃗ , r⃗ ′ , 𝜔) ×←−∇ ′. (3.47)

Note that we have used integration by parts to obtain the emGreen’s function, which
assumesG (r⃗ , r⃗ ′ , 𝜔) vanishes at spatial infinity.

We can further obtain the me and mm Green’s functions, giving the magnetic
response from electric and magnetic dipoles respectively, by using Maxwell’s equa-
tions, (3.14) . The magnetic field response is therefore given by [82, eq. 2.195]

B⃗(r⃗ , 𝜔) = −P

∫
d3r ′ 𝜌N (r ′⃗) `0c

←→
G me (r⃗ , r⃗ ′ , 𝜔) · p̂(r⃗ ′ , 𝜔) (3.48)

−P

∫
d3r ′ 𝜌N (r ′⃗) `0

←→
G mm (r⃗ , r⃗ ′ , 𝜔) · m̂(r⃗ , 𝜔) ,



26 CHAPTER 3. MACROSCOPIC QED OF MULTI-LAYERS

where [82, eq. 2.199, 2.201]

←→
G me (r⃗ , r⃗ ′ , 𝜔) =

−→∇ ×←→G (r⃗ , r⃗ ′ , 𝜔) i𝜔
c

(3.49)

←→
G mm (r⃗ , r⃗ ′ , 𝜔) =

−→∇ ×←→G (r⃗ , r⃗ ′ , 𝜔) ×←−∇ ′. (3.50)

These Green’s functions have the dimension of inverse volume.

3.2 Quantization of field in linear medium

In linear media, the electromagnetic field can be quantized in terms of the dyadic
Green’s function of the material. Below we summarize the main results, following
the derivation of Buhmann [82].

First, Bosonic noise fields are introduced, corresponding to electric and mag-
netic noise, _ = e, m, and satisfying the following commutation relations

[ f̂ _ (r⃗ , a) , f̂
†
_ ′ (r⃗

′ , a ′)] = 𝛿__ ′𝛿
3 (r⃗ − r⃗ ′)𝛿 (a − a ′) , (3.51)

[ f̂ _ (r⃗ , a) , f̂ _ ′ (r⃗
′ , a ′)] = 0. (3.52)

The noise field frequency a is at this stage formal parameter, as in the Schrödinger
picture operators have no time dependence. However, we desire that this frequency
parameter corresponds to a Fourier component for the free field in the Heisenberg
picture, i.e.

𝜕t f̂ _ (r⃗ , a , t) = − i
ℏ
[ f_ (r⃗ , a , t) , HF ] = −ia f̂ _ (r⃗ , a , t) , (3.53)

where HF is the noise field Hamiltonian. In order for this to hold, the following
Hamiltonian is required [82, eq. 2.271]

HF =
∑︁
_=e,m

∫ ∞

0
da

∫
d3r ℏa f †

_
(r⃗ , a) f_ (r⃗ , a). (3.54)

Under this Hamiltonian, the noise fields then have a Heisenberg picture time de-
pendence of

f̂ _ (r⃗ , a , t) = f̂ _ (r⃗ , a , 0)−iat . (3.55)

In terms of the noise fields, the electric and magnetic fields are given by [82, eq.
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2.259, 2.263]:

Ê+ (r⃗ , a) =
∑︁
_=e,m

∫
d3s
←→
Z _ (r⃗ , s⃗, a) · f̂ _ ( s⃗, a) , (3.56)

Ê− (r⃗ , a) = Ê+ (r⃗ , a)† , (3.57)

Ê(r⃗) =
∫ ∞

0
da

(︂
Ê+ (r⃗ , a) + Ê− (r⃗ , a)

)︂
, (3.58)

B̂+ (r⃗ , a) =
1
ia

∑︁
_=e,m

∫
d3s ∇ ×←→Z _ (r⃗ , s⃗, a) · f̂ _ ( s⃗, a) , (3.59)

B̂− (r⃗ , a) = B̂+ (r⃗ , a)† , (3.60)

B̂(r⃗) =
∫ ∞

0
da

(︂
B̂− (r⃗ , a) + B̂+ (r⃗ , a)

)︂
, (3.61)

←→
Z e (r⃗ , r⃗ ′ , a) = i

a2

c2

√︄
ℏ

𝜋Y0
Im Y (r⃗ ′ , a)←→G (r⃗ , r⃗ ′ , a) , (3.62)

←→
Z m (r⃗ , r⃗ ′ , a) = i

a

c

√︄
ℏ

𝜋Y0

Im `(r⃗ ′ , a)
|`(r⃗ ′ , a) |2

←→
G (r⃗ , r⃗ ′ , a) × ∇′. (3.63)

We have introduced the notation E± to denote positive and negative frequency field
components, having noted that our choice of Fourier convention results in annihi-
lation operators corresponding to positive frequencies (Appendix C.1). The electric
field obeys the equal time commutation relations [82, eq. A.2]

[Ê+ (r⃗ , a) , Ê− (r⃗ ′ , a ′)] =
ℏ`0a

2

𝜋
Im{←→G (r⃗ , r ′⃗ , a)}𝛿 (a − a ′). (3.64)

This can be easily seen to be equal to

[Ê+ (r⃗ , a) , Ê− (r⃗ ′ , a ′)] = −
ℏ

𝜋Y0
Im{←→G ee (r⃗ , r⃗ ′ , a)}𝛿 (a − a ′). (3.65)

Using

B̂+ (r⃗ , a) =
1
ia
∇ × Ê+ (r⃗ , a) , (3.66)

and

B̂− (r⃗ , a) = −
1
ia
∇ × Ê− (r⃗ , a) =

1
ia
Ê+ (r⃗ , a) × ∇, (3.67)

one can then show that the magnetic field obeys the following equal time commu-
tator

[B̂+ (r⃗ , a) , B̂− (r⃗ ′ , a ′)] = −
ℏ`0

𝜋
Im{←→G mm (r⃗ , r ′⃗ , a)}𝛿 (a − a ′). (3.68)

These commutators in turn show that the field is consistent with the fluctuation-
dissipation theorem [82, eq. 2.268].

3.3 Input/output fields
In order to evaluate observables such as the scattered intensity, reflectivity, trans-
mission etc. we need to be able to determine the propagation of both incoming
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and outgoing fields in the medium. In particular, the incident beam is specified as a
free space solution of Maxwell’s equations, while the detectors in an experiment are
placed far away from the sample, and measure both the field scattered directly by
the medium, in addition the field scattered by the nuclei. We must therefore be able
to evaluate the incoming and outgoing fields scattering by the electronic medium,
in terms of their free space expressions and vice versa.

To do this, we will use the method of fictitious sources. This is based on the
vector-dyadic form of Kirchoff’s integral formula [83]. In free space, the electric
field obeys the differential equation

∇ × ∇ × E⃗0 (r⃗ , 𝜔) −
𝜔2

c2
E⃗0 (r⃗ , 𝜔) = i𝜔`0 j⃗ (r⃗ , 𝜔). (3.69)

The free space Green’s dyadic obeys

∇ × ∇ ×←→G 0 (r⃗ , r⃗ ′ , 𝜔) −
𝜔2

c2
←→
G 0 (r⃗ , r⃗ ′ , 𝜔) =

←→
𝟙 𝛿3 (r⃗ − r⃗ ′). (3.70)

In the case that the entire source current j⃗ is enclosed by a volumeV , using Green’s
second theorem, the solution at a position r⃗ that lies outsideV can be written in the
form [83, eq. 1.95]

E⃗0 (r⃗ , 𝜔) = i𝜔`0

∫
V

d3r ′
←→
G 0 (r⃗ , r ′⃗ , 𝜔) · j⃗ (r⃗ ′ , 𝜔)

+
∮
𝜕V

d2s
←→
G 0 (r⃗ , s, 𝜔) · n̂(s) × ∇ × E⃗0 ( s⃗, 𝜔) +

←→
G 0 (r⃗ , s, 𝜔) × ∇ · n̂(s) × E⃗0 ( s⃗, 𝜔).

(3.71)

Note that we have dropped the principal value notation, as we are only considering
observation points outside the source region, which allows the integrals to converge
in the usual way. In addition, we note that although Hanson and Yakovlev define
(3.71) in terms of an observation point inside the source region [83, fig. 1.1], (3.71)
holds even for observation points outside the source position, Figure 3.1.

The case j⃗ = 0 gives the Kirchoff integral formula for the homogeneous solution,

E⃗0 (r⃗ , 𝜔) =
∮
𝜕V

d2s
←→
G 0 (r⃗ , s, 𝜔)·n̂(s)×∇×E⃗0 ( s⃗, 𝜔)+

←→
G 0 (r⃗ , s, 𝜔)×∇·n̂(s)×E⃗0 ( s⃗, 𝜔).

(3.72)
We can use (3.46) , (3.47) and (3.5) to write this as

E⃗0 (r⃗ , 𝜔) = −
∫
𝜕V

d2s
(︃
c2

i𝜔
←→
G 0,ee (r⃗ , s⃗, 𝜔) · B⃗0 ( s⃗, 𝜔) × n̂( s⃗)

+ c
i𝜔
←→
G 0,em (r⃗ , s⃗, 𝜔) · E⃗0 ( s⃗, 𝜔) × n̂( s⃗)

)︃
. (3.73)

Comparing with equation (3.45) , we see that this is equivalent to the response from
fictitious electric and magnetic polarization densities

P⃗0 (r⃗ , 𝜔) =
1

i `0𝜔
B⃗0 (r⃗ , 𝜔) × S⃗ (r⃗) , (3.74)

M⃗0 (r⃗ , 𝜔) =
1

i `0𝜔
E⃗0 (r⃗ , 𝜔) × S⃗ (r⃗) , (3.75)
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Figure 3.1: Geometry considered in Equation (3.71) . All sources r⃗ ′ are bounded
by a surface S, with normal vectors n̂ and interior volumeV , while the observation
point under consideration r⃗ lies in the exterior ofV .

where S⃗ (r⃗) is the surface normal distribution for the boundary 𝜕V , equal to the
indicator distribution for the surface times the field of normal vectors along the
surface.

This allows us, given a desired incident field in free space, to obtain the scattered
field via the Green’s function of the system. Specifically, we enclose both the obser-
vation position r⃗ and all scatterers in a bounding volumeV , such that the boundary
of the volume lies in free space. We then specify the desired free fields along the
surface. We then construct the full scattered field from the fictitious sources using
the full Green’s function,

E⃗(r⃗ , 𝜔) = −
∫

d3r ′
1
Y0

←→
G ee (r⃗ , r⃗ ′𝜔) · P⃗0 (r⃗ ′ , 𝜔) (3.76)

−
∫

d3r ′ `0c
←→
G em (r⃗ , r⃗ ′ , 𝜔) · M⃗0 (r⃗ , 𝜔).

Substituting back (3.74) , (3.75) , and using (3.5) gives

E⃗(r⃗ , 𝜔) = −
∫
𝜕V

d2s
c
ik
←→
G ee (r⃗ , s⃗, 𝜔) · B⃗0 ( s⃗, 𝜔) × n̂( s⃗) (3.77)

−
∫
𝜕V

d2s
1
ik
←→
G em (r⃗ , s⃗, 𝜔) · E⃗0 ( s⃗, 𝜔) × n⃗( s⃗) ,

B⃗(r⃗ , 𝜔) = −
∫
𝜕V

d2s
1
ik
←→
G me (r⃗ , s⃗, 𝜔) · B⃗0 ( s⃗, 𝜔) × n̂( s⃗) (3.78)

−
∫
𝜕V

d2s
1
ikc
←→
G mm (r⃗ , s⃗, 𝜔) · E⃗0 ( s⃗, 𝜔) × n⃗( s⃗).

With this, we have completed our specification of the electromagnetic fields and
their quantization in linear media, and we shall now proceed to specify the quantum
model for the nuclei, and their interaction with the magnetic field.
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Chapter 4

The Green’s function and its
resonant structure

Whether we are interested in nuclear forward scattering, grazing incidence scat-
tering, or front coupled waveguide scattering, the relevant Green’s function is that
of a multi-layered dielectric, with the scattering geometry affecting the boundary
conditions of the incident and outgoing fields.

In this section, we therefore give an overview of the well known analytic expres-
sions for the multi-layer Green’s functions, which appear in various works, such as
Tomaš [80], Hanson and Yakovlev [83], Johansson [81], Buhmann [82], and oth-
ers. As we will make use of various analytic properties of this solution, we therefore
give an overview of its derivation, and discuss its structure as a complex function.
In particular, we illustrate that guided modes of the structure appear as poles of the
spatially Fourier transformed Green’s function, with branch cuts appearing for each
capping layer, corresponding to the radiative modes that propagate in the capping
layers.

Finally, in order to inform the experimental design of X-ray waveguides, it is
important to have simple, easy to calculate figures of merit. We therefore show
how various important figures of merit can be given in terms of the Green’s func-
tion and its spatial Fourier transform, thus allowing for qualitative and quantitative
comparison of the merit of different candidate designs.

4.1 Analytic expression for multi-layers

The coordinate system we will use for our multi-layers is such that the layers are
stacked in the z direction, and uniform in the xy plane, Figure 4.1.

Experimentally, thin film waveguides are formed through a sputter deposition
process [30, 36] and therefore the layers are polycrystalline, and highly disordered.
As such, the Bragg contribution to scattering is negligible. In addition, at hard X-ray
wavelengths, the magnetic contribution to electronic scattering is negligible, while
the electric contribution is far from any electronic resonances. We can therefore
describe the media as linear dielectrics, given as a spatially varying refractive index
n(z). These refractive indices are well studied, and highly accurate estimations have
been implemented in software libraries such as ‘xraylib’ [85].

31
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Figure 4.1: Geometry of a multi-layer slab waveguide, used to evaluate the Green’s
function. Each layer l has its own relative permittivity and permeability Yl , `l . The
upper interface of layer l is labelled dl . In dashed lines we have highlighted four par-
ticular z coordinates of importance: zsrc , the source position, zobs, the observation
position (i.e. where the scattered field is being evaluated), and ztop, zbot , which ar-
bitrary reference positions above and below all sources and interfaces, respectively.
ztop and zbot are used for setting the normalization of the fields used in computing
the Green’s function.

As the layers are translationally symmetric in the x , y directions, we have an
overall cylindrical symmetry. We can therefore express the dyadic Green’s function
as

←→
G (r⃗ , r ′⃗ , 𝜔) =

∫
d2q
(2𝜋)2

eiq⃗ · ( �⃗�− �⃗�
′ )←→G (q⃗ , z, z′ , 𝜔) , (4.1)

where we distinguish the real space and q⃗ space Green’s function by their arguments,
�⃗� is the projection of r⃗ to the x , y plane, and q⃗ a wave-vector for this plane. In
cylindrical coordinates, we can express the planar wave-vector as

q⃗ = q(cos
(︁
𝜙q

)︁
x̂ + sin

(︁
𝜙q

)︁
ŷ) , (4.2)

and due to cylindrical symmetry, we can express the q⃗ space Green’s function for
arbitrary 𝜙q in terms of rotation matrices and the solution for 𝜙q = 0,

←→
G (q , 𝜙q , z, z′ , 𝜔) =U (𝜙q)

←→
G (q , 𝜙q = 0, z, z′ , 𝜔)U (𝜙q)⊤ , (4.3)

where U (𝜙q) is a rotation matrix in the qx , qy plane. As such, the problem can be
solved as two-dimensional, which we will do so in the following section.
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4.1.1 Transfer matrix derivation

In this section, we will give a derivation of the multi-layered Green’s function in
terms of transfer matrices, following largely Johansson [81] as well as Hanson and
Yakovlev [83].

The Fourier transformed Green’s function can be separated according to the po-
larization of the scattered plane waves being considered, s and p. These correspond
to transverse electric (TE) and transverse magnetic (TM) fields respectively.

Our geometry is such that we consider the fields propagating along x with trans-
verse wave-vector q, with the layer stacked along the z axis, Figure 4.1. The TE field
therefore has electric field E polarized along ŷ, while the TM field has magnetic field
H polarized along ŷ. As we will be considering a particular transverse wave-vector
q, and single frequency 𝜔, we will omit their notation in the function arguments for
the rest of this section.

The TE and TM fields obey the equations of motion [83]

(𝜕2
z + n(z)2k2 − q2)Ey = i𝜔`0 je,y − 𝜕x jm,z + 𝜕z jm,x (4.4)

(Y𝜕zY−1𝜕z + n(z)2k2 − q2)Hy = i𝜔𝜖0Y jm,y + 𝜕x je,z − Y𝜕zY−1 je,x , (4.5)

where we note that we have set ` = 1, as the magnetic scattering of the layers is
negligible. The refractive index is therefore given by n(z)2 = Y (z) in this regime.

We can therefore separately solve for the scalar Green’s function GTE , GTM of
(4.4) and (4.5) respectively, and use (3.36) to obtain the full dyadic Green’s func-
tion,

←→
G (q , z, z′ , 𝜔) = ŷ ⊗ ŷGTE +

1
Y (z)Y (z′)k2

(ŷ × ∇ ⊗ ∇′ × ŷ) GTM , (4.6)

where we have ignored the delta contribution in (4.5) , as it can be absorbed into the
depolarizing dyadic, which we argued in Section 3.1 will only contribute physically
via small shifts of the single particle frequencies and decay rates of resonant nuclei
placed in the waveguide.

In particular, if we consider as input

j⃗e = ŷ
1

i𝜔`0
𝛿 (z − z′) , (4.7)

j⃗m = ŷ
1

i𝜔𝜖0
𝛿 (z − z′) , (4.8)

we can see that they will drive only the TE and TM fields respectively, and the
resulting solutions of Ey , Hy will give the corresponding Green’s functions by their
definitions, (3.31) , (3.32) .

Transfer matrices

The general solution to (4.4) and (4.5) can be given in terms of a superposition of
upward and downward propagating waves,

Ey (z) = As (z) + Bs (z) , Hy (z) = Ap (z) + Bp (z) , (4.9)

where A is the upward and B the downward propagating solution respectively. We
first consider Ey , Hy within the lth layer. Within a layer, Y, n are constant, and we
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will denote them as Yl , nl . The homogeneous solutions to (4.4) , (4.5) are then given
within layer l as

El (z) = Asl (dl )e
ipl (z−dl ) + Bsl (dl )e

−ipl (z−dl ) , (4.10)

Hl (z) = Apl (dl )e
ipl (z−dl ) + Bpl (dl )e

−ipl (z−dl ) , (4.11)

p2
l + q

2 = n2
l k

2 , (4.12)

where El , Hl denote the field evaluated within the layer, and dl is the coordinate of
the top of the lth layer.

We can represent this via a vector of the two components,

El (z) =
(︁
1 1

)︁
· E⃗(z) , (4.13)

E⃗(z) ≡
(︃
Asl (z)
Bsl (z)

)︃
, (4.14)

and similarly

Hl (z) =
(︁
1 1

)︁
· H⃗(z) , (4.15)

H⃗(z) ≡
(︃
Apl (z)
Bpl (z)

)︃
. (4.16)

Within a layer, we can see that propagation from position z′, z within the layer is
given by the matrix

E⃗l (z) = Sl (z, z′) E⃗l (z′) (4.17)

H⃗l (z) = Sl (z, z′)H⃗l (z′) (4.18)

Sl (z, z′) =
(︃
eipl (z−z

′ ) 0
0 e−ipl (z−z

′ )

)︃
, (4.19)

which we can see is the same for both TE and TM fields. On the other hand, to relate
propagation across a layer boundary, we must make use of the respective boundary
conditions of (4.4) and (4.5) , which we will now show give the Fresnel matrices for
s and p polarizations respectively.

Fresnel matrices

We now will consider the transfer matrix for the boundary between layers l and n.
These are found from the boundary conditions that both derivatives in (4.5) , (4.5)
should have continuous arguments.

The boundary condition for TE waves from (4.4) is that Ey and 𝜕zEy must be
continuous at a layer boundary. This gives

Asl + B
s
l = A

s
n + Bsn , (4.20)

iplA
s
l − iplB

s
l = ipnA

s
n − ipnBsn , (4.21)

where we are implicitly evaluating A, B at the layer boundary. In matrix notation,
we have (︃

1 1
ipl −ipl

)︃
E⃗l =

(︃
1 1
ipn −ipn

)︃
E⃗n . (4.22)
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This can be rearranged to give

E⃗l =T
s
ln E⃗n , (4.23)

T s
ln =

1
2pl

(︃
pl + pn pl − pn
pl − pn pl + pn

)︃
, (4.24)

which is the matrix of Fresnel coefficients for s polarization as expected.
For TM waves, (4.5) gives the boundary condition that Hy , and Y−1𝜕zHy must

be continuous at the layer boundary. This gives

Apl + B
p
l = A

p
n + Bpn , (4.25)

i
pl
Yl
Apl − i

pl
Yl
Bpl = i

pl
Yn
Apn − i

pn
Yn
Bpn . (4.26)

In matrix form, we then have,(︃
1 1
i pl
Yl
−i pl

Yl

)︃
H⃗l =

(︃
1 1
i pn
Yn
−i pn

Yn

)︃
H⃗n . (4.27)

This can be rearranged to give

H⃗l =T
p
lnH⃗n , (4.28)

T p
ln =

1
2plYn

(︃
plYn + pnYl plYn − pnYl
plYn − pnYl plYn + pnYl

)︃
, (4.29)

which is the matrix of Fresnel coefficients for p polarization as expected. We note
the difference in expressions compared with Johansson [81] arises from the fact that
we have considered the H field, as opposed to the E field for theTM mode.

Full transfer matrix

Combining the S andT matrices, we can define the full transfer matrixW , that re-
lates the field components at arbitrary positions z to arbitrary positions z′, including
in different layers. Let l be the layer index of the observation position z, n the layer
of the source position z′, and dl the coordinates of the upper interface of the lth
layer (Figure 4.1). We then have

El (z) =W s,+ (z, z′)En (z′) , (4.30)

W s,+ (z, z′) = Sl (z, dl−1)T s
l ,l−1Sl−1 (dl−1 , dl−2) . . .T s

n+1,nSn (dn , z′) , (4.31)

for z > z′, and

El (z) =W s,− (z, z′)En (z′) , (4.32)

W s,− (z, z′) =
[︁
W s,+ (z′ , z)

]︁−1 , (4.33)

for z < z′. Analogous expressions giveW p,± for theTM field.
Now that we have determined the propagation of the field through the layers,

we must impose appropriate boundary conditions. The scattered field for z > z′

should be outgoing in the top layer. This is imposed by setting

Bs (ztop) = Bp (ztop) = 0, (4.34)

As (ztop) = Ap (ztop) = 1, (4.35)
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where ztop is an arbitrary position within the top layer, above z,z′. Note that at
this stage, the normalization of the fields is arbitrary, so we have set them to unit
amplitude in the outgoing layer for convenience. Denoting this field solution as E+,
H+, we have [81]

E+ (z) =
(︁
1 1

)︁
W s,− (z, ztop)

(︃
1
0

)︃
(4.36)

=W s,−
1,1 (z, ztop) +W

s,−
2,1 (z, ztop) ,

H+ (z) =W p,−
1,1 (z, ztop) +W

p,−
2,1 (z, ztop) , (4.37)

whereWi j refers to the matrix element i , j. Similarly, we require the scattered field
for z < z′ to be outgoing in the bottom layer. We therefore set

Bs (zbot) = Bp (zbot) = 1, (4.38)

As (zbot) = Ap (zbot) = 0, (4.39)

where zbot is an arbitrary reference position in the bottom layer, below z, z′.
Denoting this solution as E− , H− , we then have

E− (z) =W s,+
1,2 (z, zbot) +W

s,+
2,2 (z, zbot) , (4.40)

H− (z) =W p,+
1,2 (z, zbot) +W

p,+
2,2 (z, zbot). (4.41)

Green’s functions

Finally, we must determine the normalization of the solution. The general outgoing
solution for Ey is given by

Ey (z) = 𝛼E+ (z)Θ(z − z′) + 𝛽E− (z)Θ(z′ − z) , (4.42)

where Θ is the Heaviside step function, and 𝛼, 𝛽 are some yet to be determined
coefficients. As the source is a delta distribution, we require only continuity of the
field, but not its derivative at z = z′. This requires

𝛼E+ (z′) = 𝛽E− (z′). (4.43)

We can therefore write

Ey (z) =
E+ (z)E− (z′)Θ(z − z′) + E+ (z′)E− (z)Θ(z′ − z)

Ds
, (4.44)

for a single yet to be determined coefficient Ds.
A similar argument shows

Hy (z) =
H+ (z)H− (z′)Θ(z − z′) +H+ (z′)H− (z)Θ(z′ − z)

Dp
. (4.45)

The second boundary condition is obtained by combining our source equations,
(4.7) , (4.8) with the TE, TM equations, (4.4) , (4.5) give

(𝜕2
z + Yk2 − q2)Ey (z) = 𝛿 (z − z′) , (4.46)

(𝜕zY−1𝜕zHy (z) + k2 − q2)Hy = 𝛿 (z − z′). (4.47)
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Integrating these over an infinitesimal interval [z′−dz, z′ +dz], and taking the limit
𝛿 → 0 gives

lim
dz→0

𝜕zEy (z′ + dz) − 𝜕zEy (z′ − dz) = 1, (4.48)

lim
dz→0

Y (z′ + dz)−1𝜕zHy (z′ + dz) − Y (z′ − dz)−1𝜕zHy (z′ − dz) = 1. (4.49)

Using (4.44) , (4.45) , these evaluate to

𝜕zE+ (z′)E− (z′) − E+ (z′)𝜕zE− (z′) = Ds , (4.50)
1

Y (z′) (𝜕zH+ (z
′)H− (z′) −H+ (z′)𝜕zH− (z′)) = Dp , (4.51)

i.e. the denominators are proportional to the Wronskian of the solutions. In par-
ticular, Vassallo shows [86] that the denominators are constant, and evaluate to

Ds = −2ip+T s
+ , (4.52)

Dp = −2ip+
Y+

T𝜎
+ , (4.53)

T𝜎
+ =W 𝜎 ,+

12 (ztop , zbot) , (4.54)

where p+ is the z wave-vector in the top layer, Y+ the permittivity, andT𝜎
+ the trans-

mission coefficients for propagating 𝜎 polarized light upward from the bottom layer
to the top. We finally have

GTE (z, z′) =
E+ (z)E− (z′)Θ(z − z′) + E+ (z′)E− (z)Θ(z′ − z)

−2ip+T s
+

, (4.55)

GTM (z, z′) =
H+ (z)H− (z′)Θ(z − z′) +H+ (z′)H− (z)Θ(z′ − z)

−2ip+T
p
+ /Y+

. (4.56)

To obtain the dyadic Green’s function, we can use (3.36) , to obtain

←→
G (z, z′) = ŷ ⊗ ŷGTE (z, z′) +

1
Y (z)Y (z′)k2

(︂
ŷ × ∇̄ ⊗ ∇̄′ × ŷ

)︂
GTM (z, z′) , (4.57)

where we have defined

∇̄ = iqx̂ + 𝜕z ẑ, (4.58)

∇̄′ = −iqx̂ + 𝜕′z ẑ, (4.59)

which give the gradient in the partially Fourier transformed space. We note that the
denominator of Y (z)Y (z′)k2 accounts for the difference in Fresnel matrices between
E and H , as we mentioned previously.

Explicitly, let us write H+ (z) in the shorthand

H+ (z) =W1 (z) +W2 (z) , (4.60)

Wi (z) =W s,−
i1 (z, ztop). (4.61)

We then have

∇̄H+ (z) = iq(W1 (z) +W2 (z)) x̂ + ipl (W1 (z) −W2 (z)) ẑ, (4.62)
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where l is the layer containing z. By definition,

k±l = qx̂ ± pl ẑ (4.63)

is the wave-vector for upward (+) and downward (-) propagating solutions. We can
therefore write (4.62) as

∇̄H+ (z) = iq(W1 (z) +W2 (z)) x̂ + ipl (W1 (z) −W2 (z)) ẑ (4.64)

= inlk
(︂
k̂
+
lW1 (z) + k̂

−
l W2 (z)

)︂
,

where we note that
q2 + p2

l = n2
l k

2. (4.65)

On the other hand, we note that since ŷ is the unit vector for s polarization, it’s curl
with k̂

±
l gives the corresponding unit vector for p polarization,

ŷ × k̂±l = p̂±l =
±pl x̂ + qẑ
nlk

. (4.66)

We therefore have

1
Y (z)k ŷ × ∇̄H+ (z) =

i
nl
p̂+lW

p,−
11 (z) +

i
nl
p̂−l W

p,−
21 (z). (4.67)

For both grazing incidence and front coupling, the z component of the wave-
vectors are negligible compared with q. As a result, the Fresnel coefficients of both p
and s polarized components are approximately equal, and the p polarization vector
is approximately ẑ. We therefore approximate

←→
G (q , z, z′ , 𝜔) ≈ ←→𝟙 ⊥GTE (q , z, z′ , 𝜔) , (4.68)

where
←→
𝟙 ⊥ = ŷ ⊗ ŷ + ẑ ⊗ ẑ.

4.2 Spectral theory and resonances of the Green’s func-
tion

Maxwell’s equations in dielectric media form a Sturm-Liouville system of equa-
tions, and as such admit a spectral representation. This is discussed in great detail
by Hanson and Yakovlev [83], in particular in Chapter 8. We will first demonstrate
how the Fourier integral for the real space Green’s function is obtained from the
complex structure of GTE , and then proceed to compare with the eigenfunction
expansions of Hanson and Yakovlev.

To begin, we consider the real space form of the Green’s function,

←→
G ( �⃗� − �⃗�

′ , z, z′) =
∫

d2q
(2𝜋)2

←→
G (q⃗ , z, z′)eiq⃗ · ( 𝜌− �⃗�

′ ) , (4.69)

where
�⃗� = xx̂ + yŷ. (4.70)
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We will consider the case y = y′, such that we are left with the effectively two-
dimensional Green’s function

←→
G 2D (x − x′ , z, z′) =

∫
dq
2𝜋
←→
𝟙 ⊥GTE (q , z, z′)eiq (x−x

′ ) , (4.71)

where we have reintroduced the explicit notation of q, but are continuing to suppress
the notation of the frequency 𝜔, as we are still considering the Green’s function for
a particular fixed frequency.

Let us consider for now the case x > x′. Then, we may close the q integral
contour in upper half of the complex q plane, with the arc portion of the contour
vanishing due to the exponential decay of eiq (x−x

′ ) , Figure 4.2. However, we must
take care with the complex structure of GTE when we choose our contour, as it
contains both poles and branch cuts. We will consider these now.

Figure 4.2: Arc contour for evaluating (4.71) . The horizontal contributionC0 (pur-
ple) corresponds to the original Fourier integral, while the arc contributionsC+ (red)
and C− (blue) correspond to the closures for x > x′ and x < x′ respectively, and
vanish as R → ∞, due to the exponential decay of eiq (x−x

′ ) . However, the contour
must be deformed to avoid the branch cuts (black dashed lines), which give rises to
the radiative modes of the Green’s function.

4.2.1 Poles

GTE has poles whenever
E+ (q , z) = E− (q , z) , (4.72)

which can be seen by the vanishing of the Wronskian Ds, and hence divergence of
(4.55) . As E+ and E− are equal for a pole, we will label them both as

E_ (z) = E+ (q_ , z) = E− (q_ , z) , (4.73)

where _ index the poles q_ . By construction E+ is purely outgoing in the top layer,
and E− is purely outgoing in the bottom layer. Therefore, at a pole, the mode
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function E_ is purely outgoing, and thus exponentially attenuated, in both capping
layers. As such, E_ normalizable.

The order M_ of a given pole q_ , as well as its location can be determined by
applying the argument principle [87] to the Wronskian Ds (q): as a holomorphic
function Ds (q) has no singularities, therefore evaluating

M_ =
1

2𝜋i

∮
C

dq
𝜕qDs (q)
Ds (q) , (4.74)

for a closed contour C gives the sum of the multiplicity of each zero within. As the
zeroes of Ds are the poles of the Green’s function, this therefore gives the sum of
the orders of all poles within C.

To obtain the location of all poles within a given contour, one can therefore pro-
ceed as follows: start with the initial contour C and subdivide it. Evaluate the zero
number of the Wronskian within each subdivision with (4.74) . Discard subdivisions
without zeros, and proceed with recursive subdivisions on the rest. Subdivision can
be halted when the size of the remaining contours reaches a desired tolerance, giv-
ing an approximate location and multiplicity for the zeroes. Finally, these can be
refined using a root finding algorithm such as Newton’s algorithm from this initial
starting point. There is no physical restriction on the order of the poles [83], how-
ever, as we shall see in Chapter 8, for realistic layer structures we only find simple
poles, M = 1.

4.2.2 Branch cuts

The second complex structure to consider are the branch cuts of GTE. The transfer
matrices, and hence GTE implicitly depend on the z wave-vector in each layer l,

pl = i
√︃
q2 − Ylk2 , (4.75)

each of which has a branch cut. Nevertheless, it can be shown that the branch cut
for each inner layer is cancelled due to the fact that it appears in both Tll−1, and
the denominator ofTl+1l , and thus the only physical branch cuts are in the capping
layers [86, 88–91].

The only branch cuts which are not cancelled are therefore those that appear
only in a single Fresnel matrix, which is the case for the top and bottom layers.
Therefore, the branch cuts of GTE are precisely those of

ptop = i
√︃
q2 − Ytopk2 , (4.76)

pbot = i
√︃
q2 − Ybotk2. (4.77)

For a physical choice of branch cut, we require outward propagating solutions to be
exponentially decaying solutions in both capping layers. This is achieved in (4.75)
if one makes the standard choice of branch cut for the function

√
z, which is along

the negative real z axis. With this choice of cut, Im(pl ) ≥ 0 everywhere in the
upper half plane as desired. This results in the form seen in Figure 4.3. The cut
asymptotically tends toward a vertical line, and thus we must deform our arc to
avoid the cut. The integration along this cut corresponds to ‘radiative’ modes, that
is, the continuum of electromagnetic modes that propagate out into the capping
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layers. Close to the branch cut, the imaginary part of pl tends to zero, while the
real part changes sign as one crosses the cut, Figure 4.4. As a result, these solutions
correspond to radiation modes, fields that propagate unattenuated out into the z
direction. q remains complex however, and hence the resulting fields are attenuated
in the x direction.

Im(q/k0)

Re(q/k0)
0.5 1.0

Re
-1.0 -0.5

-2

-1

1

2
Im(q/k0)

n = 0.8 + 0.1

Figure 4.3: Physical choice of branch cut for the z wave-vector p(q)as a function of
complex q. This choice results in the outward propagating field being exponentially
attenuated in the capping layers. The branch cuts initially are approximately hori-
zontal, then tend asymptotically toward a vertical line. Note however that integrals
involving eiqx will be oscillatory when performed on a contour around this cut.

For numerical purposes, this branch cut is not ideal, as the detour will have oscil-
latory behaviour due to the fact that Re(q) is not constant, and therefore for x fixed,
eiqx will have oscillatory contributions, that will grow in frequency as x increases. As
the only physical constraint on our branch cut is that it does not cross the real q axis,
we are free to choose an arbitrary cut, not just the exponentially damped choice.

For numerical efficiency, the best choice is a vertical line upward from the branch
point, Figure 4.5, which can be achieved by rearranging the expressions for pl to

pl = i
√︁
−i (knl − q)

√︁
−i (knl + q) , (4.78)

nl =
√
Yl , (4.79)

where the square roots have the usual branch cut along the negative real axis. With
this choice of branch cut, the real part of q is constant along the detour, and therefore
ei Re(q)x can be factored out, leaving a purely exponentially decaying integrand. The
integrand will decay exponentially, and far more rapidly as x increases, thus making
this choice of branch cut highly numerically efficient.

On the other hand, manipulating the branch cut exposes new poles to the inte-
grand. These poles correspond to ‘leaky’ modes, which are exponentially growing in
the capping layers, rather than attenuated. As such, one may be concerned that their
inclusion results in a diverging expression for the Green’s function if one considers
observation points z in the capping layers.

This is not the case however, as the choice of branch cut does not affect the
values of G1D along the real q axis, which is the only determinant of the final Fourier
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- 1.0
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Figure 4.4: Real and imaginary values of f (z) = i
√
−1 + iz as one crosses the branch

cut at z = 0. One can see that the imaginary part of f (z) vanishes at the cut, while the
real part changes sign as z crosses the cut. This demonstrates that as one approaches
the branch cut of Figure 4.3, the attenuation/exponential growth in the capping
layer vanishes, and thus the solutions correspond to radiating modes.

transformed result. Indeed, it has been shown that even though the leaky modes
are individually divergent as z → ∞, their contribution can be divided into two
regimes [90]: the evanescent, and diffractive regime. In the evanescent regime,
z close to the capping interfaces, the leaky modes interfere constructively, and the
overall real space Green’s function will grow exponentially. However, for sufficiently
large z, one enters the diffractive regime. In this regime, the contribution from the
leaky modes interfere destructively and the real space Green’s function then decays
with a power law attenuation [90].

Real space Green’s function

While we have discussed the case x > x′ so far, similar arguments can be made for
the complex structure x < x′, except that one closes the integration contour in the
lower half plane of q. Since GTE is even in q,

GTE (q , z, z′) = GTE (−q , z, z′) , (4.80)

and thus for each pole q_ , in the upper half plane, −q_ is also a pole in the lower half
plane. As we have seen in Figures 4.3 and 4.5, the same applies to the branch cuts,
giving us

←→
G 2D (x − x′ , z, z′) = i

←→
𝟙 ⊥

∑︁
_

g_ (z, z′)eiq_ |x−x
′ + i←→𝟙 ⊥grad (x − x′ , z, z′) , (4.81)
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Figure 4.5: Vertical branch cut for the z wave-vector p(q) as a function of complex
q. This choice is numerically efficient when computing the real space Green’s func-
tion, at the expense of uncovering poles corresponding to ‘leaky’ modes, which are
exponentially divergent in the capping layers.

where g_ (z, z′) is the residue ofG2D (q , z, z′) at the pole q_ , and

grad (x − x′ , z, z′) =gtop (x − x , z, z′) + gbot (x − x , z, z′) (4.82)

gtop (x − x′ , z, z′) =eintopk0 |x−x
′ | (4.83)

× lim
𝜖→0

∫ ∞

0

ds
2𝜋
e−s |x−x

′ | (︁GTE (ntop − 𝜖 + i s) − GTE (ntop + 𝜖 + i s)
)︁

gbot (x − x′ , z, z′) =einbotk |x−x
′ | (4.84)

× lim
𝜖→0

∫ ∞

0

ds
2𝜋
e−s |x−x

′ | (GTE (nbotk − 𝜖 + i s) − GTE (nbotk + 𝜖 + i s))

are the branch cut contributions. Physically, gtop and gbot correspond to the contin-
uum of modes that are outward radiating in the top and bottom layers respectively.

Note that in the case ntop = nbot , the branch cuts become degenerate, and there
is an ambiguity about the separation of radiation modes into top and bottom con-
tributions [86, 90]. If the waveguide is symmetric, one can instead separate the
radiation modes into odd and even solutions [86, 90], but the general situation is
more challenging to analyse. One potential solution is to introduce a small increase
in loss 𝜖 in one of the layers, such that the two branch cuts are infinitesimally sepa-
rated [86]. One can then evaluate the two branch cuts separately, and consider the
limit as 𝜖 approaches zero.

4.2.3 Spectral theory

We are now ready to identify the components of (4.81) with the results of spectral
theory, which are explained in detail in Chapter 8 of Hanson and Yakovlev [83], as
well as Vassallo [86].

Hanson and Yakovlev identify the spectral solution of (4.4) and (4.5) with two
classes of modes: modes that are proper in z forming a discrete set, which we index
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with _ , and modes that are improper in z, that form a continuum, that we index
with a. The expansion in terms of these modes is then given by [83, p. 8.154][86,
eq. 17]

GTE (q , z, z′) =
∑︁
_

u_ (z)u_ (z′)
2iq_ (q − q_ )

+
∑︁
𝜎=±

∫ ∞

0

da
2𝜋

w𝜎 (a , z)w𝜎 (a , z)
4i ^ (a , z)W s,−

11 (^ (a , ztop) , ztop , ztop)
𝛿 (q − ^ (a , z)) (4.85)

where ^ =
√︁
n(z)2k2 − a2, and w± refers to improper modes which radiate into the

top (+) and bottom (-) cladding. By inspection, we can immediately identify this
spectral expansion with our expansion (4.81) in terms of the poles and branch cut
respectively. However, for this expansion to converge, one requires that the modes
are normalizable, in the sense that there exists an inner product such that

⟨u_ , u_ ′ )⟩ = 𝛿__ ′ , (4.86)

⟨w+ (a , ·) , w+ (a ′ , ·)⟩ = 𝛿 (a − a ′) , (4.87)

⟨w− (a , ·) , w− (a ′ , ·)⟩ = 𝛿 (a − a ′) , (4.88)

⟨w+ (a , ·) , w− (a ′ , ·)⟩ = 0, (4.89)

⟨u_ , w+ (a , ·)⟩ = 0, (4.90)

⟨u_ , w− (a , ·)⟩ = 0, (4.91)

where the dot in the notation for w+ (a , ·) denotes that it is the z argument that is
being integrated over by the inner product.

If such an inner product exists, then the resolution of the identity is given by

𝛿 (z − z′) =
∑︁
_

u_ (z)u_ (z′)

+
∫ ∞

0
da w+ (a , z)w+ (a , z′) +

∫ ∞

0
da w− (a , z)w− (a , z′). (4.92)

Now that we have introduced the modes of the waveguide, let us proceed to
analyse the proper and improper modes in detail.

Proper modes

The proper modes form a countable set, and are normalizable with the inner prod-
uct

⟨u_ ′ , u_ ⟩TE =

∫ ∞

−∞
dz u_ (z)u_ ′ (z) = 𝛿__ ′ (4.93)

forTE modes [83, 86], and

⟨u_ ′ , u_ ⟩TM =

∫ ∞

−∞

dz
Y (z) u_ (z)u_

′ (z) = 𝛿__ ′ (4.94)

forTM modes [83, 86]. Note that these are not the L2 inner products: one does not
take the complex conjugate of u_ ′ . This is due to the fact that for lossy dielectrics,
←→
GTE is the kernel of a symmetric integral operator, but not Hermitian [83].



4.2. SPECTRALTHEORYANDRESONANCESOFTHEGREEN’S FUNCTION45

These inner products are convergent for lossy capping layers, and the “physical”
choice of branch cut, as all poles correspond to exponentially decaying solutions.
On the other hand, for capping layers without loss, e.g. air, or choosing a branch
cut that exposes leaky modes, the outgoing solutions are not normalizable.

However, it has been shown that one may modify the inner product in such a way
that all proper modes are orthonormal [92–94], even for leaky modes. Specifically,
we note that in the outer capping layers, the modes are of the form

u_ (z) ∝
{︄
eip+,_ z , z > ztop ,
e−ip− ,_ z , z < zbot ,

(4.95)

where p+,_ , p− ,_ are the z wave-vectors for q_ in the top and bottom capping layers
respectively. One then finds that the integral over the top layer in (4.93) gives, for
an attenuated, guided mode,∫ ∞

ztop
dz u_ (z)u_ ′ (z) = u_ (ztop)u_ ′ (ztop)

∫ ∞

ztop
dz ei (p+,_+p+,_ ′ ) (z−ztop ) (4.96)

= −
u_ (ztop)u_ ′ (ztop)
i (p+,_ + p+,_ ′ )

,

where we have used continuity to write

u_ (z) = u_ (ztop)eip+,_ (z−ztop ) , z > ztop . (4.97)

We also have∫ zbot

−∞
dz u_ (z)u_ ′ (z) = u_ (zbot)u_ ′ (zbot)

∫ zbot

−∞
dz e−i (p− ,_+p− ,_ ′ ) (z−zbot ) (4.98)

= −u_ (zbot)u_
′ (zbot)

i (p− ,_ + p− ,_ ′ )
.

One can therefore rewrite (4.93) as

⟨u_ ′ , u_ ⟩TE =

∫ ztop

zbot
dz u_ (z)u_ ′ (z) −

u_ (ztop)u_ ′ (ztop)
i (p+,_ + p+,_ ′ )

− u_ (zbot)u_
′ (zbot)

i (p− ,_ + p− ,_ ′ )
(4.99)

= 𝛿__ ′ .

Unlike (4.93) , this form is finite for all proper modes, even leaky modes [92–94].
As the proper modes correspond to the pole contributions of (4.81) , we can see

that we have

u_ (z) =
E_ (z)√︁
⟨E_ , E_ ⟩

. (4.100)

Now that we have described the proper modes, let us focus on the improper
modes, which correspond to modes that radiate out of the core of the waveguide,
into the cladding.

Improper modes

The improper mode contribution in (4.85) can immediately be identified with the
integral over the branch cut contributions, for the physical choice of branch cut [86].
However, as we have deformed the branch cuts to the vertical cut, Figure 4.5, this
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expression will no longer hold. In particular, with the vertical choice of branch cuts,
Im(p±) is no longer zero along the cut, and the radiation modes are exponentially
divergent in the capping layers. As such, it is not clear if one can define an inner
product and hence proper spectral expansion in the sense of (4.86) through (4.91) .
Nevertheless, for our purposes, this is not necessary. The extent of the radiative
modes is short, as they are attenuated with at least the attenuation length of the
corresponding cladding material. Therefore, for evaluating the input fields, we can
neglect their contribution away from the front and back interfaces. In addition, in
Appendix A, we show that over the bandwidth of the fields that we will consider, the
remaining branch cut contributions can be approximated as a constant background
plus a series of poles, and the resulting coupling to the resonant nuclei is negligible
in practice. As such, we can safely ignore the radiative modes, as their dominant
contribution has already been extracted as the leaky modes.

We can therefore model the Green’s function as

GTE (q , z, z′) ≈
∑︁
_

u_ (z)u_ (z′)
2iq_ (q − q_ )

, (4.101)

where _ indexes the poles of the vertical choice of branch cut, and the mode func-
tions are orthonormal with the inner product (4.99) .

4.3 Figures of merit
In this section, we will consider three important figures of merit for the interaction
of a dipole with a waveguide mode: the Q factor, the mode volume and the scat-
tering cross-section. TheQ factor is defined as the ratio of the energy stored to the
energy dissipated per oscillation period of the mode. The mode volume measures
the spatial confinement of the mode, and is obtainable from the normalization of
the mode functions for finite resonators. However, for unbounded resonators, such
as our multi-layer planar waveguides, the definition of mode volume is more am-
biguous. Finally, the scattering cross-section gives the ratio of scattered power to the
incident intensity for a photon interacting with an atomic/nuclear transition dipole.

4.3.1 Q factor

Given an oscillator with a Lorentzian response function,

f (𝜔) ∝ 1

𝜔 − 𝜔_ + i Γ_2
, (4.102)

theQ factor can be shown to be equal to

Q_ =
𝜔_

Γ_
. (4.103)

If there exists a proper eigenmode, with wave-vector q_ , the frequency response of
a proper mode is then the superposition of two Lorentzians, one giving the positive
frequency and the other the negative frequency response:

1

𝜔2/c2 − q2
_

=
c

2q_

(︃
1

𝜔 − 𝜔_

− 1
𝜔 + 𝜔_

)︃
, (4.104)
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where 𝜔_ = q_ c. Comparing this to (4.102) and (4.103) we see that

Q_ =

|︁|︁|︁|︁ Re{𝜔_ }
2 Im{𝜔_ }

|︁|︁|︁|︁ = |︁|︁|︁|︁ Re{q_ }
2 Im{q_ }

|︁|︁|︁|︁ . (4.105)

However, for improper modes, the modes are infinite in extent, and both the power
stored and power dissipated are infinite. The frequency response will be of the form

f (𝜔) ∝
∫

da
w(a)

𝜔2 − a2
(4.106)

for somew(a) that gives the weighting of the continuum of proper modes that make
up the improper mode. In particular, for a guided mode of our slab waveguide, we
have

f (𝜔) =
∫

dq
2𝜋

Re{g_ (𝜔)}q_ (𝜔) + i Im{g_ (𝜔)}q
2(q2 − q_ (𝜔)2)

, (4.107)

which is a divergent quantity. Therefore, there is no sensibleQ factor for a coupling
directly to a guided mode.

On the other hand, at grazing incidence, for a sufficiently well collimated beam,
we pick out a particular angle of incidence \ for all frequency components, giving

f (\ , 𝜔) = g_ (𝜔)
𝜔 cos \/c − q_ (𝜔)

− g_ (𝜔)∗
𝜔 cos \/c + q_ (𝜔)

. (4.108)

In particular, if the dispersion of g_ , q_ is sufficiently small compared with 1/c, we
can neglect dispersion, and obtain a Lorentzian frequency response. The Q factor
in this case is given by

Q (\) =
|︁|︁|︁|︁ Re{q_ }
2 Im{q_ }

|︁|︁|︁|︁ (4.109)

as before, where we note that the cos \ factor appears in both the numerator and
denominator, and therefore cancels. As this is thus independent of the angle of
incidence, we can therefore consider it to be an intrinsicQ factor of the mode.

Mode volume

For the mode volume, Kristensen et al. [92] have derived expressions in terms of
an outward radiating normalization condition for the resonant modes. However,
we desire an expression in terms of the dyadic Green’s function, and will therefore
derive this now.

Our starting point is the Purcell factor. In his 1946 note [95], Purcell considered
the maximal possible decay rate of an atom embedded in a cavity, compared with
the free space rate. He demonstrated that this was given by the eponymous Purcell
factor,

Γ_

Γ0
=

6𝜋Q_

V_ k3
0

, (4.110)

where Γ_ is the decay rate of a two-level atom placed at the maximum of the mode,
Γ0 the free space decay rate, k0 the wave-number of the transition, and Q_ ,V_ the
Q factor and mode volume respectively.

To link this to the Green’s function, we can use the spontaneous decay rate of an
electric dipole transition in terms of the Green’s function, given by [78, eq. 8.115]

Γ =
2℘2

3ℏ𝜖0

|︁|︁|︁tr[︂Im{←→G ee (r⃗0 , r⃗0 , 𝜔0)}
]︂ |︁|︁|︁ , (4.111)
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where r⃗0 is the atomic position, ℘ the magnitude of the dipole matrix element, and
the trace is with respect to the polarization indices of the dyadic Green’s function.
Note that we are considering general Green’s functions here, not just free space.

In free space, the trace of the Green’s function gives [78, eq. 8.119]|︁|︁|︁tr[︂Im{←→G ee (r⃗0 , r⃗0 , 𝜔0)}
]︂ |︁|︁|︁ = k3

0

2𝜋
. (4.112)

Defining
←→
G ee,_ (r⃗ , r ′⃗ , 𝜔) = −k2

0
u⃗_ (r⃗) ⊗ u⃗_ (r⃗ ′)
𝜔2/c2 − q2

_

, (4.113)

we see that
Γ_

Γ0
=

2𝜋

k3
0

|︁|︁|︁tr[︂Im{←→G ee,_ (r⃗0 , r⃗0 , 𝜔0)}
]︂ |︁|︁|︁ . (4.114)

Combining (4.105) , (4.110) and (4.114) gives us the mode volume in terms of the
Green’s function at the mode maximum,

V_ =

|︁|︁|︁|︁ Re{q_ }
2 Im{q_ }

|︁|︁|︁|︁ · |︁|︁|︁|︁13 tr
[︂
Im{←→G ee,_ (r⃗ c , r⃗ c , 𝜔0)}

]︂ |︁|︁|︁|︁−1

, (4.115)

where r⃗ c is the position at the mode maximum. Rearranging this gives the following
identity: |︁|︁|︁|︁13 tr

[︂
Im{←→G ee,_ (r⃗ c , r⃗ c , 𝜔0)}

]︂ |︁|︁|︁|︁ = Q_

V_
. (4.116)

For an unconfined mode, such as a Fourier mode of free space, the mode volume
is formally divergent, as the mode is unconfined. However, for partially confined
modes, such as guided modes of a waveguide, we can nevertheless define a ‘mode
volume’ for the directions that are confined. For example, for a thin-film nanos-
tructure, the guided modes are confined in the z direction, and thus we can define
a mode length for this axis.

4.3.2 Scattering cross-section

The scattering cross-section of the photon-atom/nucleus interaction is defined as
the ratio of scattered power to incident intensity. The calculation of this is a textbook
exercise, and one can show in particular that for a monochromatic driving field the
scattered power is given by [60, p. 5.271]

Psc = ℏ𝜔0Γ𝜌ee (t →∞) , (4.117)

where 𝜌ee is the density matrix element for the excited state population, and t →∞
denotes the steady state value.

Considering a monochromatic driving field with amplitude E0 and detuning Δ,
the steady state solution of the optical Bloch equations is given by [60, p. 5.273]

𝜌ee (t →∞) =
1
2

I/Isat
1 + Δ2/Γ2 + I/Isat

, (4.118)

where the intensity is given by

I =
1
2
𝜖0cE2

0 , (4.119)
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and the saturation intensity is defined as

Isat =
Γ2I
2Ω2

, (4.120)

where

Ω =
℘E0

ℏ
(4.121)

is the Rabi frequency of the transition.
On resonance, Δ = 0, and for linear driving I/Isat ≪ 1, this reduces to

𝜌ee (t →∞) ≈
I
Isat

, (4.122)

thus giving a cross-section of

𝜎0 =
Psc
I

=
ℏ𝜔0Γ

2Isat
. (4.123)

One can show [60, eq. 5.254] that in free space this gives the usual expression of

𝜎0 =
2𝜋

k2
0

. (4.124)

However, we are interested in particular in the partial cross-sections, that is to say,
the cross-section for scattering from a particular mode. This is done by considering
the contribution to the scattered power only from the given mode. This is therefore
given by substituting the total decay rate in (4.117) with the partial decay rate for
the mode,

P_ = ℏ𝜔0Γ_ 𝜌ee (t →∞). (4.125)

The steady state solution and hence saturation intensity remain the same, and we
therefore find that the partial cross-section 𝜎_ is given by

𝜎_ =
P_
Psc

𝜎0 =
2𝜋

k2
0

· Γ_
Γ

. (4.126)
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Chapter 5

Quantum model for
nucleus-field interaction

In this chapter, we introduce the quantum model to model the nuclei, and their
interaction with the magnetic field. We begin by introducing the state transition
operators of the nuclei in Section 5.1. Then, in Section 5.2 we give an overview of
the magnetic dipole coupling Hamiltonian for the nucleus-field interaction.

The nuclei undergo spontaneous decay both due to electromagnetic radiation,
and their interaction with their solid state environment. We therefore discuss these
incoherent processes in Section 5.3, and give the Lindblad super-operators that we
use to describe them.

Finally, the magnetic field can be decomposed into an overall plane-wave phase
factor times a slowly varying envelope, therefore in Section 5.5 we introduce the
interaction picture that is used to transform into the slowly varying ‘co-rotating’
frame of the fields and nuclei.

5.1 Transition operators
For the purposes of evaluating the equations of motion of the nuclei, it is useful to
introduce the single particle transition operators,

Π̂
(i )
ab = |a⟩⟨b | , (5.1)

where the bra–ket notation is implied to only act on the Hilbert space of the ith
particle, and a, b label states in this Hilbert space. These transition operators obey
the following algebra:

[Π̂ (i )ab , Π̂
( j )
cd ] = 𝛿i j

(︂
Π̂
(i )
ad 𝛿bc − Π̂

(i )
cb 𝛿ad

)︂
, (5.2)

Π̂
(i )
ab Π̂

(i )
bc = Π̂

(i )
ac , (5.3)∑︁

a

Π̂
(i )
aa = 𝟙. (5.4)

We can use this notation to express the basis expansion of the transition dipole
operators,

m̂ (i ) = m0

∑̀︁
, j

d⃗ ` jΠ̂
(i )
` j + h.c. = m̂ (i )+ + m̂ (i )− , (5.5)

51
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where ` indexes excited states, and j indexes ground states.
For the case of a single particle, the expectation value of a transition operator

can be easily seen to be equivalent to the density matrix elements,⟨︁
Π̂ab

⟩︁
≡ tr

{︁
�̂� Π̂ab

}︁
= 𝜌ba . (5.6)

However, for an entangled many-particle state, the density matrix elements are
not so straightforward to analytically compute with, whereas correlations of the
transition operators can be systematically expanded through the cumulant expan-
sion method, allowing for a hierarchy of equations of motion to be obtained and
analysed.

5.2 Magnetic dipole Hamiltonian

The wavelength of the resonant X-rays are substantially larger than the nuclear ra-
dius. Therefore, we may use the long wave-length approximation and use a dipole
interaction Hamiltonian. The nucleus can interact with the field through either re-
coil free elastic scattering, or couple with phonons and undergo inelastic scattering.
The latter case will be discussed in the following section on incoherent processes.
Therefore, we model only the recoil free portion in our Hamiltonian, via the Lamb-
Mössbauer factor fLM , the fraction of radiative interaction that occurs through the
elastic channel. As fLM describes the overall transition fraction, which is proportional
to the modulus square of the interaction Hamiltonian elements via Fermi’s golden
rule, we therefore multiply the Hamiltonian by an overall pre-factor of

√︁
fLM , giving

HI =
√︁
fLM

∑︁
i

p̂i · Ê(r⃗ i ) −
√︁
fLM

∑︁
i

m̂i · B̂(r⃗ i ) , (5.7)

where p̂i , m̂i are the electric/magnetic transition dipole operators of the ith nucleus
respectively. For commonly used nuclei such as 57Fe, the transitions are electric
dipole forbidden, so we may take p̂i = 0.

The matrix elements for the transition dipole operator m̂ can be obtained via
the Wigner–Eckart theorem [96, eq. B.29],

⟨︁
Ie , me

|︁|︁m̂|︁|︁Ig , mg ⟩︁ = √︃
(2Ie + 1)B(M1, Ie → Ig )

1∑︁
q=−1

êq (−1)Ie−me
(︃
Ie 1 Ig
−me q mg

)︃
,

(5.8)
where [96, eq. B.74]

B(M1, Ie → Ig ) =
1

2Ie + 1
|
⟨︁
Ie
|︁|︁|︁|︁m̂|︁|︁|︁|︁Ig ⟩︁ |2 (5.9)

is the reduced transition probability, in Weisskopf units, and êq are the spherical
basis vectors.

More generally, for the qth component of a spherical rank k tensor, arbitrary
excited state `, and arbitrary ground state j, it will be useful to introduce the notation

⟨`|T (k)q | j⟩ =
1

√
2Ie + 1

⟨︁
Ie
|︁|︁|︁|︁T (k) |︁|︁|︁|︁Ig ⟩︁C (kq , `→ j) , (5.10)
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where
⟨︁
Ie
|︁|︁|T (k) ||︁|︁Ig ⟩︁ is the usual reduced matrix element, and

C (kq , `→ j) =
√︁

2Ie + 1
∑︁
me ,mg

(−1)Ie−me ⟨`|Ie , me⟩
⟨︁
Ig , mg

|︁|︁ j⟩︁ (︃
Ie 1 Ig
−me q mg

)︃
,

(5.11)
reducing to the Clebsch-Gordan coefficients when `, j are angular momentum eigen-
states. In general, under hyperfine interactions, the energy eigenstates are not an-
gular momentum eigenstates. However, using the notation of (5.10) and (5.11) ,
we have for a given excited state ` and ground state j,

⟨`|m̂ | j⟩ = m0d⃗ ` j , (5.12)

d⃗ ` j =
1∑︁

q=−1

êqC (kq , `→ j) (5.13)

m0 =
√︁
fLMB(M1, 3/2→ 1/2) , (5.14)

generalizing the Wigner–Eckart decomposition. Experimentally measured values
for the reduced matrix elements are commonly tabulated. For example, for M1
transitions, the corresponding Weisskopf unit is [96, tab. B1]

Bsp (M1) = 1.790`2
N , (5.15)

where we use `N = eℏ(2mp)−1 as the nuclear magneton in SI units. For the 14.4 keV
transition in 57Fe, the experimentally measured reduced transition probability is [97]

B(M1, 3/2→ 1/2) = 0.0078Bsp (M1) = 0.013962`2
N , (5.16)

giving an effective magnetic moment of

m0 ≈
√︁
fLM0.118161`N . (5.17)

5.3 Incoherent processes
The nucleus undergoes spontaneous decay from the excited states to the ground
states, via incoherent processes. These occur with transitions coupled via various
multi-polarities, which we denote with the transition rates

Γ(_ k , Ie → Ig ) , (5.18)

where _ = E, Mdenotes the electric or magnetic character, and k denotes the mul-
tipole order.

The rates for transitions between a specific excited state ` and ground state j will
of course depend on the magnitude of the multipole moment for these transitions,
which can be expressed via the Wigner–Eckart theorem in the form

Γ(_ l , `→ j) = Γ(_ l , Ie → Ig )R(_ l , `→ j) , (5.19)

where we have defined the rate fractions

R(_ l , `→ j) =
∑︁
q

|C (lq , `→ j) |2. (5.20)
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Using the orthogonality of Wigner 3j symbols, one can show that under a sum over
the excited eigenstates `, and ground eigenstates j, and l projection q (see Sec-
tion C.2), ∑̀︁

,q

|C (lq , `→ j) |2 =
2Ie + 1
2Ig + 1

, (5.21)∑︁
j ,q

|C (lq , `→ j) |2 = 1, (5.22)∑̀︁
, j ,q

|C (lq , `→ j) |2 = 2Ie + 1, (5.23)

and thus summing over ground state decay channels from a given excited state gives∑︁
j

Γ(_ l , `→ j) = Γ(_ l , Ie → Ig ) , (5.24)

as expected. We can therefore model these incoherent processes as proportional to
Lindblad super-operators of the form

L_ l [ �̂�] =
∑︁
i

∑̀︁
, j

R(_ l , `→ j)
(︃
Π̂
(i )
j ` �̂�Π̂

(i )
` j −

1
2
{ �̂�, Π̂

(i )
``}

)︃
, (5.25)

LH
_ l [Ô] =

∑︁
i

∑̀︁
, j

R(_ l , `→ j)
(︃
Π̂
(i )
` j ÔΠ̂

(i )
j ` −

1
2
{Ô, Π̂

(i )
``}

)︃
, (5.26)

where LH denotes the Heisenberg form, acting on operators rather than density
matrices.

The largest decay channel for nuclei is through internal conversion. This is a
process where inner shell electrons interact with the nucleus, absorb the energy of
the excited state, and are ionized, relaxing the nucleus to the ground state. This is
given by

LIC [ �̂�] =
∑︁
_ ,l

ΓIC (_ l , Ie → Ig )L_ l [ �̂�]. (5.27)

The internal conversion coefficients are proportional to the product of the transi-
tion multipole operator of the nuclei, and the corresponding transition multipole
operator of the inner shell electrons. However, estimating the electron multipole
operators experimentally is challenging, and in practice these are estimated numer-
ically instead.

However, the total fraction of decay via internal conversion can readily be mea-
sured by observing the X-ray spectrum created by the relaxation of the ejected elec-
trons. This is then commonly tabulated as the total internal conversion coefficient
𝛼, defined as the ratio of total internal conversion rate to total radiative decay rate,

𝛼 =
ΓIC

Γrad
. (5.28)

In terms of the tabulated total transition decay rate Γ(Ie → Ig ), we therefore have∑︁
_ ,l

ΓIC (_ l , Ie → Ig ) = Γ(Ie → Ig )
𝛼

1 + 𝛼 . (5.29)
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For radiative decay via gamma emission, the total radiative line-width Γrad is
the combination of the elastic (recoil free) and inelastic (phonon coupled) radiation
channels. These have the same multi-polarities, with the dominant contributions
being M1 and E2.

The Lamb-Mössbauer factor is defined as the recoil free fraction of decay, thus
giving us

Γelas. = fLMΓrad , (5.30)

Γinel . = (1 − fLM )Γrad (5.31)

Γrad =
1

1 + 𝛼 Γ(Ie → Ig ). (5.32)

The radiative decay rates have the dominant multipolarities of M1 and E2, giv-
ing the following for the radiative Lindblad terms:

Lrad [ �̂�] = Γrad. (M1, Ie → Ig )LM1 [ �̂�] + Γrad. (E2, Ie → Ig )LE2 [ �̂�]. (5.33)

The ratio of E2 to M1 decay rates is commonly tabulated as the mixing ratio 𝛿,

𝛿2 =
Γrad. (E2, Ie → Ig )
Γrad. (M1, Ie → Ig )

, (5.34)

with the total rate given by (5.32) . Thus, we can write

Lrad. [ �̂�] = Γ(Ie → Ig )
1

1 + 𝛼

(︃
1

1 + 𝛿2
LM1 [ �̂�] +

𝛿2

1 + 𝛿2
LE2 [ �̂�]

)︃
. (5.35)

The full Lindblad term is therefore given by the sum of (5.27) and (5.35) ,

L[ �̂�] = Lrad. [ �̂�] + LIC [ �̂�]. (5.36)

5.4 Nuclear Hamiltonian
The nuclear Hamiltonian has the general form

HN =
∑̀︁
ℏ(𝜔0 + Δ`) |`⟩⟨`| +

∑︁
j

ℏΔ j | j⟩⟨ j | , (5.37)

where ` indexes the excited eigenstates, and j indexes the ground eigenstates. Here,
𝜔0 is the overall (zero splitting) transition frequency while Δ` , Δ j are the hyperfine
splittings of states `, j.

The origin of these hyperfine splittings are from interactions with the surround-
ing electronic environment of the nucleus. The first is the isomer shift, originating
from the monopole interaction with the surrounding electronic environment. This
can always be modelled as a constant shift of all excited sublevels. Ab initio cal-
culations generally use density functional theory to model the electron density of
a given compound of interest, using measured values of the nuclear radius for the
ground and excited levels as theoretical inputs. In practice, for thin films this is not
particularly useful due to the sputter deposition process introducing irregularities
in the material structure, and as such this must usually be fitted from experimental
data.
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The most important splitting is from the magnetic hyperfine field B experienced
by the nucleus. This is given by the following Hamiltonian,

HM = −`N gI I⃗ · B⃗, (5.38)

where gI is the g factor for the ground or excited manifold, I the nuclear spin op-
erator, and `N the nuclear magneton. Note the magnitude of splitting between the
states is given by `N gI |B |.

The final source of splitting commonly observed is the quadrupole splitting, due
to the electric field gradient (EFG) experienced by the nucleus. This can be ex-
pressed in terms of the second derivative tensor of the electric potential,

Vi j = 𝜕xi 𝜕x jV . (5.39)

As the electric potential obeys Laplace’s equation,

∇2V = 0, (5.40)

this tensor is traceless, ∑︁
i

Vii = 0. (5.41)

It is always possible to choose a coordinate system such that the maximum gradient
is along z, and that the off-diagonal components vanish (i.e. Vzx = 0 etc). The
interaction Hamiltonian is then given by

HQ =
eQI

2I (2I − 1) (V
2
xxI

2
x +VyyI2

y +VzzI2
x ) , (5.42)

with e the electron charge, and QI the quadrupole moment (i.e. reduced matrix
element of the nuclear quadrupole tensor). In practice however, one instead usually
defines the interaction in terms of the principle axis gradient,Vzz, and the so-called
asymmetry parameter,

[ =
Vxx −Vyy
Vzz

. (5.43)

By convention this is chosen to be such that 0 ≤ [ ≤ 1. We then have

HQ =
eQIVzz

4I (2I − 1) (3I
2
z − I2 + [ (I2

x − I2
y )). (5.44)

Note that states with I = 1/2 have no quadrupole interaction. A general orientation
of quadrupole can be obtained by a unitary rotation transformation. Unlike the
magnetic case, the splitting between states will grow as the Iz eigenvalue m grows,
and will depend on the total spin of the state. As such, we will define the quadrupole
splitting to simply be

ΔQ = eQIVzz . (5.45)

This gives

HQ =
ΔQ

4I (2I − 1) (3I
2
z + −I2 + [ (I2

x − I2
y )). (5.46)
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5.5 Interaction picture
The total Hamiltonian is given

H = HF +HN +HI , HN =
∑︁
i

H (i )N . (5.47)

Here,HF is the field Hamiltonian given by (3.54) ,HN is the sum over the individual
nuclear Hamiltonians, each having the form of (5.37) , and HI is the interaction
Hamiltonian given by (5.7) .

In general, the nuclear transition operators will have a phase factor evolving
with the overall transition frequency 𝜔0, plus or minus a small detuning due to
the hyperfine splittings. The remaining time dependence will consist of a slowly
varying envelope, that evolves over the timescale of the spontaneous decay rate 𝛾

rather than the transition frequency. In addition, the scattered field will also consist
of a similarly slowly varying envelope times ei𝜔0t phase factor. We therefore wish to
eliminate the resonant phase of both the nuclear and field operators. To eliminate
the resonant phase, we adopt the transformation Hamiltonian

HT =
∑︁
i

∑̀︁
ℏ𝜔0Π̂

(i )
`` + ℏ𝜔0

∑︁
_=e,m

∫ ∞

0
da

∫
d3r f̂

†
_ (r⃗ , a) f̂ _ (r⃗ , a). (5.48)

This then defines a unitary evolution operatorUT (t) = exp
(︂
i
ℏHT t

)︂
, that can be

used to obtain the interaction picture of the operators,

UT (t)Π̂
(i )
``′U

†
T (t) = Π̃

(i )
``′ (5.49)

UT (t)Π̂
(i )
j j′U

†
T (t) = Π̃

(i )
j j′ , (5.50)

UT (t)Π̂
(i )
` jU

†
T (t) = Π̃

(i )
` j e

i𝜔0t , (5.51)

UT (t) f̂
†
_ (r⃗ , a)U †T (t) = f̃

†
_ (r⃗ , a)ei𝜔0t , (5.52)

UT (t)B̂(r⃗)U †T (t) = B̃+ (r⃗)e
−i𝜔0t + h.c, (5.53)

B̂± (r⃗) ≡ B̂
†
∓ (r⃗) =

∫ ∞

0
da B̂± (r⃗ , a) , (5.54)

where we have defined the total positive and negative fields in the last line, and use
Õ to denote the transformation picture quantity associated with operator Ô. The
transformed nuclear and field Hamiltonians read

H̃N +HF˜ =UI (t) (HN +HF )U †I (t) −HT , (5.55)

H̃
(i )
N =

∑̀︁
ℏΔ`Π̃

(i )
`` +

∑︁
j

ℏΔ jΠ̃
(i )
j j , (5.56)

H̃F =
∑︁
_=e,m

∫ ∞

0
da

∫
d3r ℏ(a − 𝜔0) f̃

†
_ (r⃗ , a) f̃ _ (r⃗ , a).

The dipole interaction Hamiltonian reads

H̃ I (t) = −m0

∑︁
i

∑̀︁
, j

(︂
d⃗ ` jΠ̃

(i )
` j e

i𝜔0t + h.c.
)︂
·
(︂
B̃+ (r⃗ i )e−i𝜔0t + h.c.

)︂
. (5.57)
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5.6 Continuum limit
In the continuum limit, we replace the discrete nuclear positions with a continuum
field, with a density of 𝜌N (r⃗)

Sums over indices are replaced by integration over the density∑︁
i

→
∫

d3r 𝜌(r⃗) (5.58)

The normalization of the density gives∫
d3r 𝜌(r⃗) = N . (5.59)

Similarly, we replace the Kronecker delta with a distribution proportional to the
Dirac delta,

𝛿i j → D(r⃗ − r⃗ ′) ∝ 𝛿3 (r⃗ − r⃗ ′). (5.60)

The proportionality is found by noting that the following must hold,∑︁
i

𝛿i j =

∫
d3r D(r⃗ − r⃗ ′) = 1, (5.61)

and using (5.58) we see that the proportionality constant must therefore be 𝜌−1
N ,

giving

𝛿i j →
1

𝜌N (r⃗)
𝛿3 (r⃗ − r⃗ ′). (5.62)

For homogeneous resonant layers, we can take a uniform density of 𝜌N = N
V . Thus,

we have

Π̂
(i )
ab (t) → Π̂ab (r⃗ , t) , (5.63)∑︁

i

→ 𝜌N

∫
d3r , (5.64)

𝛿i j →
1
𝜌N

𝛿3 (r⃗ − r⃗ ′). (5.65)

The commutation relation between transition operators then become

[Π̂ab (r⃗ , t) , Π̂cd (r⃗ ′ , t)] =
1
𝜌N

𝛿3 (r⃗ − r⃗ ′)
(︁
Π̂ad (r⃗ , t)𝛿bc − Π̂cb (r⃗ , t)𝛿ad

)︁
, (5.66)

with the interaction Hamiltonian now given by

H̃ I (t) = −𝜌Nm0

∑̀︁
, j

∫
d3r

(︂
Π̃ ` j (r⃗ , t)d⃗ ` jei𝜔0t + h.c

)︂
·
(︂
B̃+ (r⃗)e−i𝜔0t + h.c.

)︂
. (5.67)

Now that we fully specified both the fields and nuclei and their Hamiltonians, we
can proceed to evaluate their equations of motion.



Chapter 6

Equations of motion and their
solution

In the following chapter, we will implicitly work in the transformed frame of Sec-
tion 5.5, and as such drop the Õ notation.

6.1 Nuclear Bloch equations

We begin with the master equation for an arbitrary operator Ô,

𝜕tÔ =
i
ℏ
[ĤN + ĤF + Ĥ I (t) , Ô] + LH [Ô] , (6.1)

where LH is the Heisenberg form of the Lindblad terms. For the transition opera-
tors, we find the following commutators with the interaction Hamiltonian,

[Ĥ I (t) , Π̂ `a (r⃗ , t)] = m0

∑︁
j

(︂
Π̂ ` j (r⃗ , t)d⃗a jei𝜔0t − Π̂ ja (r⃗ , t)d⃗

∗
` je
−i𝜔0t

)︂
· B̂(r⃗ , t)

(6.2)

[Ĥ I (t) , Π̂ jk (r⃗ , t)] = −m0

∑̀︁ (︂
Π̂ `k (r⃗ , t)d⃗ ` jei𝜔0t − Π̂ j ` (r⃗ , t)d⃗

∗
`ke
−i𝜔0t

)︂
· B̂(r⃗ , t) ,

(6.3)

[Ĥ I (t) , Π̂ ` j (r⃗ , t)] = m0

(︄∑︁
a

Π̂ `a (r⃗ , t)d⃗
∗
a je
−i𝜔0t −

∑︁
k

Π̂k j d⃗
∗
`ke
−i𝜔0t

)︄
· B̂(r⃗ , t) ,

(6.4)

[Ĥ I (t) , Π̂ j ` (r⃗ , t)] = −m0

(︄∑︁
a

Π̂a ` (r⃗ , t)d⃗a jei𝜔0t −
∑︁
k

Π̂ jk d⃗ `ke
i𝜔0t

)︄
· B̂(r⃗ , t) , (6.5)

where `, a index excited states, j , k index ground states, and

B̂(r⃗ , t) = B̂+ (r⃗ , t)e−i𝜔0t + B̂− (r⃗ , t)ei𝜔0t (6.6)

59



60 CHAPTER 6. EQUATIONS OF MOTION AND THEIR SOLUTION

is the total magnetic field. The nuclear Hamiltonian commutators give

[ĤN , Π̂ `a (r⃗ , t)] = ℏ(Δ` − Δa )Π̂ `a (r⃗ , t) , (6.7)

[ĤN , Π̂ jk (r⃗ , t)] = ℏ(Δ j − Δk)Π̂ jk (r⃗ , t) , (6.8)

[ĤN , Π̂ ` j (r⃗ , t)] = ℏ(Δ` − Δ j)Π̂ ` j (r⃗ , t). (6.9)

The Lindblad terms acting on excited state transition operators give

LH [Π̂ `a (r⃗ , t)] = −𝛾Π̂ `a (r⃗ , t) , (6.10)

where 𝛾 is the total line-width, summed over all multi-polarities.
For ground state transition operators they give

LH [Π̂ jk (r⃗ , t)] = 𝛿 jk

∑̀︁
Γ(`→ j)Π̂ `` (r⃗ , t) , (6.11)

where the partial line-width is given by

Γ(`→ j) =
∑︁

_=E,M

∑︁
l

Γ(_ l , `→ j) , (6.12)

with the multipolar line-widths given by (5.19) .
Finally, for excited-ground state transition operators they give

LH [Π̂ ` j (r⃗ , t)] = −
𝛾

2
Π̂ ` j (r⃗ , t). (6.13)

Combined, we have the following nuclear Bloch equations,

𝜕tΠ̂ `a (r⃗ , t) =
(︁
i (Δ` − Δk) − 𝛾

)︁
Π̂ `a (r⃗ , t) (6.14)

+ im0

ℏ

∑︁
j

(︂
Π̂ ` j (r⃗ , t)d⃗a jei𝜔0t − Π̂ ja (r⃗ , t)d⃗

∗
` je
−i𝜔0t

)︂
· B̂(r⃗ , t) ,

𝜕tΠ̂ jk (r⃗ , t) = i (Δ j − Δk)Π̂ jk (r⃗ , t) + 𝛿 jk
∑̀︁

Γ(`→ j)Π̂ `` (r⃗ , t) (6.15)

− im0

ℏ

∑̀︁ (︂
Π̂ `k (r⃗ , t)d⃗ ` jei𝜔0t − Π̂ j ` (r⃗ , t)d⃗

∗
`ke
−i𝜔0t

)︂
· B̂(r⃗ , t) ,

𝜕tΠ̂ ` j (r⃗ , t) =
(︂
i (Δ` − Δ j) −

𝛾

2

)︂
Π̂ ` j (r⃗ , t) (6.16)

+ im0

ℏ

(︄∑︁
a

Π̂ `a (r⃗ , t)d⃗
∗
a je
−i𝜔0t −

∑︁
k

Π̂k j d⃗
∗
`ke
−i𝜔0t

)︄
· B̂(r⃗ , t) ,

𝜕tΠ̂ j ` (r⃗ , t) =
(︂
−i (Δ` − Δ j) −

𝛾

2

)︂
Π̂ j ` (r⃗ , t) (6.17)

− im0

ℏ

(︄∑︁
a

Π̂a ` (r⃗ , t)d⃗a jei𝜔0t −
∑︁
k

Π̂ jk d⃗ `ke
i𝜔0t

)︄
· B̂(r⃗ , t).

With the nuclear Bloch equations derived, we will proceed to evaluate the equation
of motion for the field.
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6.2 Field equation of motion
Recall that the frequency parameter of each field component is a formal parameter,
with the frequency components of the field acting as Fourier components only for
the free field. The interaction with the nuclei gives rise to additional time dynamics
for each frequency component. As such, we include an explicit time dependence in
our notation of the field components, as well as the formal frequency parameter,

B̂+ (r⃗ , a) → B̂+ (r⃗ , a , t). (6.18)

The Heisenberg equation of motion for the magnetic field envelope is given by

𝜕tB̂+ (r⃗ , a , t) = i
ℏ
[H ′F +HI (t) , B̂+ (r⃗ , a , t)] (6.19)

= − i (a − 𝜔0)B̂+ (r⃗ , a , t)

− i `0

𝜋
ei𝜔0t

∫
d3r ′ 𝜌(r ′) Im{←→G mm (r⃗ , r⃗ ′ , a)} · m̂(r⃗ ′ , t) ,

where
m̂(r⃗ , t) = m0

∑̀︁
j

d⃗ ` jΠ̂ ` j (r⃗ , t)ei𝜔0t + h.c. (6.20)

is the transition magnetization. This is formally solved as

B̂+ (r⃗ , a , t) = B̂+ (r⃗ , a , −∞)e−i (a−𝜔0 )t

− i `0

𝜋
ei𝜔t

∫ t

−∞
dt′ e−ia (t−t

′ )
∫

d3r ′ 𝜌(r ′) Im{←→G mm (r⃗ , r⃗ ′ , a)} · m̂(r⃗ , t). (6.21)

The total field is then given by

B̂(r⃗ , t) =
∫ ∞

0
da

(︂
B̂+ (r⃗ , a , t)e−i𝜔0t + B̂− (r⃗ , a , t)ei𝜔0t

)︂
(6.22)

We substitute (6.21) and its Hermitian conjugate into (6.22) , to obtain

B̂(r⃗ , t) =B̂in (r⃗ , t) (6.23)

+ `0

𝜋

∫ ∞

0
da

∫ t

−∞
dt′

(︂
ieia (t−t

′ ) − ie−ia (t−t′ )
)︂

×
∫

d3r ′ 𝜌(r ′) Im{←→G mm (r⃗ , r⃗ ′ , a)} · m̂(r⃗ ′ , t) ,

where we have defined the input field B̂in to be the homogeneous solution

B̂in (r⃗ , t) =
∫ ∞

0
da B̂+ (r⃗ , a , −∞)e−iat + h.c. (6.24)

All that remains is to evaluate the scattering term. We first note that as
←→
G mm obeys

the Schwarz reflection principle [82],

←→
G mm (r⃗ , r ′⃗ , 𝜔)∗ =

←→
G mm (r⃗ , r ′⃗ , −𝜔∗) , (6.25)

that we have
Im{←→G mm (r⃗ , r ′⃗ , a)} = − Im{←→G mm (r⃗ , r ′⃗ , −a)}. (6.26)
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We can then make use of this to show that∫ ∞

0
da

∫ t

−∞
dt′

(︂
ieia (t−t

′ ) − ie−ia (t−t′ )
)︂

Im{←→G mm (r⃗ , r⃗ ′ , a)}

= i
∫ ∞

−∞
da

∫ t

−∞
dt′ eia (t−t

′ ) Im{←→G mm (r⃗ , r⃗ ′ , a)} (6.27)

This allows us to rewrite (6.27) as

B̂sc (r⃗ , t) =
i `0

𝜋

∫ ∞

−∞
da

∫ ∞

−∞
dt′ Θ(t − t′)eia (t−t′ )

×
∫

d3r ′ 𝜌(r⃗ ′) Im{←→G mm (r⃗ , r ′⃗ , a)} · m̂(r⃗ ′ , t′). (6.28)

Taking a temporal Fourier transform, we see that

B̂sc (r⃗ , 𝜔) =
`0 𝜌N

𝜋

∫ ∞

−∞
da

1
a − 𝜔 + i0+

∫
d3r ′ Im{←→G mm (r⃗ , r ′⃗ , a)} · m̂(r⃗ ′ , 𝜔).

(6.29)
We can then use the Sokhotski–Plemelj theorem [98],

1
x + i0+ = −i𝜋𝛿 (x) +P1

x
, (6.30)

combined with the Kramers–Kronig relations [84, Sec. 7.10D]

𝜋 Re{←→G mm (r⃗ , r ′⃗ , a)} = P

∫ ∞

−∞
da

1
𝜔 − a

Im{←→G mm (r⃗ , r ′⃗ , a)}, (6.31)

to obtain
B̂sc (r⃗ , 𝜔) = −`0

∫
d3r ′ 𝜌(r⃗ ′)←→G mm (r⃗ , r ′⃗ , 𝜔) · m̂(r⃗ , 𝜔). (6.32)

Thus, we can see that the scattered field obeys the macroscopic Maxwell’s equa-
tions (3.48) , with the nuclear transition dipoles as the source. We also see that this
demonstrates that the noise current frequency parameter a is not a Fourier param-
eter for the interacting system,

B̂in (r⃗ , 𝜔) + B̂sc (r⃗ , 𝜔) ≠ B̂(r⃗ , a)
|︁|︁
a=𝜔

. (6.33)

In addition, we note once again that as the Fourier transform of a Hermitian oper-
ator, m̂ obeys the Schwarz reflection principle,

m̂(r⃗ , 𝜔)† = m̂(r⃗ , −𝜔∗) , (6.34)

and combined with the Schwarz reflection of
←→
G mm we see that this also holds for

Bsc , thus showing that our expression for Bsc is consistent with it being the Fourier
transform of a Hermitian operator.

6.2.1 Beam description

To describe the input field, we will first specify the incident beam description in
free space, and then apply (3.72) to obtain the electronically scattered field. We
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first specify the beam in a coordinate system such that z is along the beam propa-
gation direction, and make an appropriate coordinate transformation to obtain its
expression in the coordinate system relevant to the geometry being considered.

The general expression for the far field of a beam propagating along ẑ is given
in terms of the Fourier components as

E⃗(r⃗ , 𝜔) =
∫

d2q
(2𝜋)2

E⃗(q⃗ , 𝜔)ei
√
k2−q2z+iq⃗ · �⃗� , (6.35)

where the integration range is over 0 ≤ q ≤ k, and

�⃗� = xx̂ + yŷ. (6.36)

The transversality of the field components is given by the constraint

E⃗(q⃗ , 𝜔) · k⃗ = 0, (6.37)

where

k⃗ =
√︃
k2 − q2 ẑ + q⃗. (6.38)

We assume that the beam envelope is uniform along the y axis, so that we may
consider an effectively two-dimensional problem. This is a good approximation for
synchrotron beams, which are tightly focused only in one direction. In this case, we
can write

E⃗(r⃗ , 𝜔) =
∫ k

−k

dq
2𝜋
E⃗(q , 𝜔)ei

√
k2−q2z+iqx , (6.39)

An alternate choice of representation is the angular spectrum representation, using
q = k sin \B. This gives

E⃗(r⃗ , 𝜔) =
∫ 𝜋/2

−𝜋/2

d\B
2𝜋

E⃗(\B , 𝜔)ei (z cos \B+x sin \B ) , (6.40)

where
E⃗(\B , 𝜔) = k cos \BE⃗(q = k sin \B , 𝜔). (6.41)

We may now use the Kirchoff integral (3.72) to obtain the scattered field, which
we will do so for grazing incidence, nuclear forward scattering, and waveguide front
coupling.

Grazing incidence

For grazing incidence, the relevant bounding surface in (3.72) is a plane z = z∞,
placed in the air layer, above both the sample and the observation z coordinate. As
the surface is considered as the limit of a sphere enclosing the incident beam source,
located at some distant positive z coordinate, we take the surface normal to be −ẑ.
Due to translational symmetry in the x , y plane, we can express everything in terms
of the x, y wave-vector q⃗, giving

B⃗(q⃗ , z, 𝜔) = − c
i𝜔
←→
G me (q⃗ , z, z∞ , 𝜔) · B⃗0 (q⃗ , z∞ , 𝜔) × ẑ

− 1
i𝜔
←→
G mm (q⃗ , z, z∞ , 𝜔) · E⃗0 (q⃗ , z∞ , 𝜔) × ẑ. (6.42)
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Figure 6.1: Coordinate geometry of grazing incidence. Relation of beam coordi-
nates x′ , z′ to layer coordinates x , z at an angle of incidence \0 is shown.

For the input field, we consider a beam propagating at an angle of incidence \0 in
the x , z plane, uniform in the y plane. In the beam coordinates, such that x̂′ is the
beam propagation direction, we have

E⃗0 (x′ , z′ , 𝜔) = cBin
∫ 𝜋/2

−𝜋/2
d\B

(︁
ŝ fs (\B) + p̂(\B) fp (\B)

)︁
ei

𝜔
c (x

′ cos \B+z′ sin \B ) (6.43)

where Bin is the field amplitude in magnetic units, ŝ, p̂(\B) are the s, p polarization
unit vectors, and fs (\), fp (\) are dimensionless expansion functions.

The beam coordinates are given in terms of the layer coordinates via (see Fig.
6.1)

x′ = x cos \0 − z sin \0 , (6.44)

z′ = x sin \0 + z cos \0. (6.45)

Thus, we can simply rotate (6.43) by an angle \0 about the y axis, to obtain its
expression in the layer coordinates,

E⃗0 (x , z, 𝜔) = cBin
∫ 𝜋/2

−𝜋/2
d\B

(︁
ŝ fs (\B) + p̂(\B − \0) fp (\B)

)︁
ei

𝜔
c (x cos(\B−\0 )+z sin(\B−\0 ) )

(6.46)

= cBin

∫ 𝜋/2−\0

−𝜋/2−\0

d\
(︁
ŝ fs (\ + \0) + p̂(\) fp (\ + \0)

)︁
ei

𝜔
c (x cos(\ )+z sin(\ ) )

(6.47)

where we have defined \ = \B+\0, and noted that ŝ, being parallel to y, is unaffected
by a rotation in the x , z plane, while p̂ is rotated by \0.

Taking a curl and dividing by i𝜔 gives the magnetic field,

B⃗0 (x , z, 𝜔) = Bin
∫ 𝜋/2−\0

−𝜋/2−\0

d\
(︁
p̂(\) fs (\ + \0) − ŝ fp (\ + \0)

)︁
ei

𝜔
c (x cos(\ )+z sin(\ ) ) ,

(6.48)
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where we have used the fact that since k̂ , ŝ, p̂ correspond to a rotation of x̂ , ŷ , ẑ, their
curl identity is

k̂(\) × ŝ = p̂(\). (6.49)

Since ŝ = ŷ, we simply have
ŝ × ẑ = x̂. (6.50)

We note that
p̂(\) = cos \ ẑ − sin \ x̂. (6.51)

We therefore have
p̂(\) × ẑ = sin \ ŷ. (6.52)

From (4.68) , we have

←→
G (q , z, z′) ≈ (ŷ ⊗ ŷ + ẑ ⊗ ẑ)GTE . (6.53)

The curl is approximately given by

∇ ×←→G (q , z, z′ , 𝜔) ≈ ikx̂ ×←→G (q , z, z′ , 𝜔). (6.54)

Therefore, using (3.49) , (3.50) gives

←→
G me ≈ −k2GTE (ẑ ⊗ ŷ − ŷ ⊗ ẑ) , (6.55)
←→
G mm ≈ −k2GTE (ŷ ⊗ ŷ + ẑ ⊗ ẑ). (6.56)

We finally obtain for the spatial Fourier components, in angular coordinates q =

k cos \ ,

B⃗(k cos \ , z, 𝜔) ≈ − ik sin(\) ẑGTE (k cos \ , z, z∞ , 𝜔) fs (\ + \0)eiz∞ sin(\ )Bin (6.57)

− ik sin(\) ŷGTE (k cos \ , z, z∞ , 𝜔) fp (\ + \0)eiz∞ sin(\ )Bin .

For grazing incidence, with a well collimated beam, one can take fs (\), fp (\) to be
proportional to 𝛿 (\).

Forward scattering

For regular nuclear forward scattering, we take a bulk sample, with infinite extent in
the yz plane. The normal vector is taken to be x̂, which is also the direction the of
propagation the incident field, which can be approximated as a plane wave,

E⃗0 (q , x , 𝜔) = 2𝜋c𝛿 (q)Bin êine−ikx , (6.58)

where q is now the z Fourier component, with Bin the field amplitude in magnetic
units, and êin · x̂ = 0 the field polarization. The magnetic field is given by

B⃗0 (q , x , 𝜔) = 2𝜋𝛿 (q)Bin (x̂ × êin)e−ikx . (6.59)

If we are interested in only the transmitted field, we can without loss of generality
take x∞ to be the incident air-sample interface, x∞ = 0. The full field is then given
by

B⃗(q , x , 𝜔) = −2𝜋𝛿 (q)Bin
(︂←→
G me (q , x , 0, 𝜔) · êin +

←→
G mm (q , x , 0, 𝜔) · (êin × x̂)

)︂
(6.60)
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Figure 6.2: Coordinate geometry for forward scattering. The beam propagates at
normal incidence along the z direction through a bulk sample.

Front coupling

For waveguide front coupling, we can no longer treat the medium as infinite in the
x extent. Thus, we must consider the interface between the air and the waveguide
explicitly.

One must consider the scattering problem between the slab waveguide system
and air interfaces on either side. For normal incidence scattering at X-ray wave-
lengths, the reflectivity is negligible. As such, we may consider the Green’s functions
for source and observation points both in the same subsystem (i.e. waveguide or
air) to be the homogeneous Green’s functions for the homogeneous medium. We
therefore take the bounding plane to be the plane of incidence at the air-waveguide
boundary, and find the incident field by imposing continuity at the boundary.

To evaluate the field in the interior, we must expand the transverse beam profile
into the waveguide mode basis of Section 4.2. Specifically, the Green’s function is
of the form

←→
G me ≈ k2 (ŷ ⊗ ẑ + ẑ ⊗ ŷ)GTE , (6.61)
←→
G mm ≈ k2 (ŷ ⊗ ŷ + ẑ ⊗ ẑ)GTE (6.62)

GTE ≈
∑︁
_

u_ (z)u_ (z′)
2iq_ (q − q_ )

, (6.63)

where the mode functions u_ obey the orthonormality relation (4.99) . We can
therefore decompose the incident fields according to

E⃗_ (x = 0, z, 𝜔) = u_ (z)
∫

dz′ u_ (z′)
←→
𝟙 ⊥ · E⃗in (x = 0, z′ , 𝜔). (6.64)

Propagating these fields in x then gives

E⃗_ (x , z, 𝜔) = E⃗_ (0, z, 𝜔)eiq_ xΘ(x) , (6.65)

where Θ is the Heaviside step function. The total field is then obtained by adding
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Figure 6.3: Coordinate geometry for front coupling to a thin-film nanostructure.
The beam propagates directly parallel to the layers. The broken translational sym-
metry in x at the incident plane means that the x Fourier components of the incident
beam are no longer conserved, compared to grazing incidence.

together the individual modes,

E⃗(x , z, 𝜔) =
∑︁
_

E⃗_ (0, z, 𝜔)eiq_ xΘ(x). (6.66)

The magnetic field can be obtained using an identical procedure.

6.3 Linear response and bandwidth considerations
A single shot from a synchrotron contains only a few resonant photons, and as such
the number density of resonant photons is far smaller than the number density of
resonant nuclei, giving an extremely low excitation fraction. As such we may con-
sider the linear response of the system, where we take the excited state population
as zero, and the ground state to be in its thermal distribution. At room temperature,
this is approximately a uniform distribution across the ground eigenstates, giving

Π̂ `a (r⃗ , t) ≈ 0

Π̂ jk (r⃗ , t) ≈ 𝛿 jk
𝟙

2Ig + 1
.

(6.67)

Upon linearization, only the excited-ground transition equations remain, given by

𝜕tΠ̂ ` j (r⃗ , t) =
(︂
i (Δ` − Δ j) −

𝛾

2

)︂
Π̂ ` j (r⃗ , t) (6.68)

− im0

ℏ(2Ig + 1) d⃗
∗
` j · B̂(r⃗ , t)e−i𝜔0t ,

𝜕tΠ̂ j ` (r⃗ , t) =
(︂
−i (Δ` − Δ j) −

𝛾

2

)︂
Π̂ j ` (r⃗ , t) (6.69)

+ im0

ℏ(2Ig + 1) d⃗ ` j · B̂(r⃗ , t)e
i𝜔0t .
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This has the Fourier space solution

Π̂ ` j (r⃗ , 𝜔) =
m0

2Ig + 1
1

ℏ(𝜔 + Δ` − Δ j − i 𝛾2 )
d⃗
∗
` j · B̂(r⃗ , 𝜔 − 𝜔0) , (6.70)

for the negative frequency operator, and

Π̂ j ` (r⃗ , 𝜔) = −
m0

2Ig + 1
1

ℏ(𝜔 − Δ` + Δ j + i 𝛾2 )
d⃗ ` j · B̂(r⃗ , 𝜔 + 𝜔0) (6.71)

for the positive frequency operator.

6.3.1 Bandwidth considerations and the rotating wave approxi-
mation

To derive the Fourier space equation of motion of the field, we required the use
of the Kramers-Kronig relations. These involve integrals over all frequencies, and
make use of the analyticity of the Green’s function with respect to frequency. These
relations are broken for the rotating wave approximation, which is why we did not
consider making it at the Hamiltonian level as is usually done. However, the nuclear
transitions have a bandwidth far smaller than the Green’s function in frequency
space, and as such, the rotating wave approximation will hold in the linear regime.
Therefore, we make the rotating wave approximation at the level of (6.71) and
(6.70) .

Rotating wave approximation

We first split the magnetization into ‘positive’ and ‘negative’ frequency components,

m̂(r⃗ , t) = e−i𝜔0tm̂+ (r⃗ , t) + h.c. (6.72)

m̂+ (r⃗ , t) = m0

∑̀︁
j

Π̂ j ` (r⃗ , t). (6.73)

We can see that the positive frequency envelope m̂+ has the Fourier space expression

m̂+ (r⃗ , 𝜔) = −←→𝜒 + (𝜔) · B̂(r⃗ , 𝜔 + 𝜔0) , (6.74)

where the positive frequency component of the nuclear susceptibility tensor can be
obtained from (6.71) ,

←→
𝜒 + (𝜔) =

m2
0

2Ig + 1

∑̀︁
, j

d⃗
∗
` j ⊗ d⃗ ` j

ℏ(𝜔 − Δ` + Δ j + i 𝛾2 )
. (6.75)

The field can be expanded into ‘positive’ and ‘negative’ frequency components as
before,

B̂(r⃗ , t) = e−i𝜔0tB̂+ (r⃗ , t) + h.c., (6.76)

where the positive and negative components are the same as defined in (5.54) .
However, although these components are positive and negative with respect to noise
current frequency a , due to the interaction with the nuclei the scattered ‘positive’
field will contain negative components with respect to physical frequency 𝜔.
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Taking a Fourier transform of (6.76) we obtain

B̂(r⃗ , 𝜔) = B̂+ (r⃗ , 𝜔 − 𝜔0) + B̂− (r⃗ , 𝜔 + 𝜔0). (6.77)

Substituting (6.77) into (6.74) we obtain

m̂+ (r⃗ , 𝜔) = −←→𝜒 + (𝜔) ·
(︂
B̂+ (r⃗ , 𝜔) + B̂− (r⃗ , 𝜔 + 2𝜔0).

)︂
(6.78)

As we have eliminated the plane wave phase factors, the Fourier transforms of
the envelopes are concentrated at 𝜔 ≈ 0. However, we can see that the negative
frequency field is coupled in the range 𝜔 ≈ −2𝜔0, which we assume to be far outside
the bandwidth of the field envelope. Thus, the rotating wave approximation in our
case reads,

m̂+ (r⃗ , 𝜔) ≈ −←→𝜒 + (𝜔) · B̂+ (r⃗ , 𝜔). (6.79)

Similarly, expressing the scattered field given by (6.32) as

B̂sc (r⃗ , t) = e−i𝜔0tB̂sc ,+ (r⃗ , t) + h.c., (6.80)

we can make the same bandwidth argument to show

B̂sc ,+ (r⃗ , 𝜔) ≈ −`0 𝜌N

∫
d3r ′
←→
G mm (r⃗ , r⃗ ′ , 𝜔 + 𝜔0) · m̂+ (r⃗ , 𝜔) , (6.81)

B̂sc ,− (r⃗ , 𝜔) ≈ −`0 𝜌N

∫
d3r ′
←→
G mm (r⃗ , r⃗ ′ , 𝜔 − 𝜔0) · m̂− (r⃗ , 𝜔). (6.82)

Dispersion of the Green’s function

The resonant bandwidth of the nuclei is incredibly small, on the order of 10−12

times the transition frequency. As such, we may consider a Taylor expansion of the
Green’s function around 𝜔0, and keep only the lowest order terms of relevance.

We will express the Green’s function in terms of an envelope and phase,

←→
G mm (r⃗ , r⃗ ′ , 𝜔) =←→g (r⃗ , r⃗ ′ , 𝜔)ei𝜙 (r⃗ , r⃗

′ ,𝜔) . (6.83)

Expanding to first order in both envelope and phase gives

←→
G mm (r⃗ , r⃗ ′ , 𝜔) =

[︄
←→g (r⃗ , r⃗ ′ , 𝜔0) + (𝜔 − 𝜔0)

𝜕
←→g
𝜕𝜔

|︁|︁|︁|︁
𝜔=𝜔0

+ O
(︂
(𝜔 − 𝜔0)2

)︂]︄
× exp

(︄
i𝜙(r⃗ , r⃗ ′ , 𝜔0) + (𝜔 − 𝜔0)

𝜕𝜙

𝜕𝜔

|︁|︁|︁|︁
𝜔=𝜔0

+ O
(︂
(𝜔 − 𝜔0)2

)︂)︄
(6.84)

For a homogeneous medium, this expansion can be done in terms of the overall
Green’s function,

←→
G 0 (r⃗ , r⃗ ′ , 𝜔) =

(︃
←→
𝟙 − 1

n2k2
∇ ⊗ ∇

)︃
eink | r⃗−r⃗

′ |

4𝜋 |r⃗ − r⃗ ′ |
(6.85)

where n is the medium refractive index, while for a waveguide, this expansion
should be done with respect to each guided mode Green’s function in (4.81) .
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Envelope dispersion

We first consider the effects of the envelope dispersion. Substituting (6.84) into
(6.81) , and keeping the phase constant, we can see that the result is an equation of
the form

B̂sc ,+ (r⃗ , 𝜔) ≈ −`0 𝜌N

∞∑︁
n=0

∫
d3r ′ 𝜔n

𝜕n
←→g

𝜕𝜔n

|︁|︁|︁|︁
𝜔=𝜔0

ei𝜙 (r⃗ , r⃗
′ ,𝜔0 ) · m̂+ (r⃗ , 𝜔) (6.86)

Fourier inverting, we obtain

B̂sc ,+ (r⃗ , t) = −`0 𝜌N

∞∑︁
n=0

in
∫

d3r ′
𝜕n
←→g

𝜕𝜔n

|︁|︁|︁|︁
𝜔=𝜔0

ei𝜙 (r⃗ , r⃗
′ ,𝜔0 ) · 𝜕

n

𝜕tn
m̂+ (r⃗ , t). (6.87)

We can see that the lowest order term gives the Markov approximation, coupling the
field instantaneously to the nuclei, while the higher order terms give non-Markov
couplings to the derivatives of the field, therefore introducing history effects.

Phase dispersion

We now focus our attention to the phase term 𝜙(r⃗ , r⃗ ′ , 𝜔). Overall, as we can see
from (6.85) , within a medium with refractive index n, the field has a phase factor
of

ein𝜔 |r−r
′ |/c . (6.88)

Therefore, in a homogeneous medium, as is applicable to nuclear forward scatter-
ing for example, we must consider at minimum a linear dispersion in the phase.
For a guided mode, the dispersion can be evaluated numerically by considering the
frequency dependence of a pole of the Green’s function.

Including the effect of linear dispersion of the phase in (6.86) gives

B̂sc ,+ (r⃗ , 𝜔) ≈ −`0 𝜌N

∞∑︁
n=0

∫
d3r ′ 𝜔n

𝜕n
←→g

𝜕𝜔n

|︁|︁
𝜔=𝜔0

× exp
(︃
i𝜙(r⃗ , r⃗ ′ , 𝜔0) + i𝜔

𝜕𝜙

𝜕𝜔

|︁|︁
𝜔=𝜔0

)︃
· m̂+ (r⃗ , 𝜔). (6.89)

Upon Fourier inversion, we can see that this will involve terms of the form∫
d𝜔
2𝜋

exp
[︃
−i𝜔t + i𝜔 𝜕𝜙

𝜕𝜔

|︁|︁
𝜔=𝜔0

]︃
f (𝜔) = f

(︃
t − 𝜕𝜙

𝜕𝜔

|︁|︁
𝜔=𝜔0

)︃
(6.90)

where f (𝜔) , f (t) are the Fourier and time domain forms of the function being in-
verted.

In particular, for a homogeneous medium, the phase dispersion is simply

𝜕𝜙

𝜕𝜔

|︁|︁
𝜔=𝜔0

=
n
c
|r⃗ − r⃗ ′ | , (6.91)

and thus the linear dispersion of the phase simply gives (6.87) with the appropriate
retarded time in the arguments,

B̂sc ,+ (r⃗ , t) ≈ −`0 𝜌N

∞∑︁
n=0

in
∫

d3r ′
𝜕n
←→g

𝜕𝜔n

|︁|︁|︁|︁
𝜔=𝜔0

ei𝜙 (r⃗ , r⃗
′ ,𝜔0 ) · 𝜕

n

𝜕tn
m̂+ (r⃗ , t −

n
c
|r⃗ − r⃗ ′ |).

(6.92)
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A second order dispersion will introduce Gaussian broadening in time, but as effects
beyond linear dispersion will be negligible in the problems we consider in Chapters
7 and 8, we need not consider this for our purposes. With this, we have defined
the general solution for the linear response regime, including the possibility of dis-
persive effects. Thus, we will now proceed to consider the applications of these
solutions to our topics of interest. We will begin with the effect of inhomogeneities
to grazing incidence in the following chapter.
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Chapter 7

Grazing incidence

In this chapter, we consider the effects of both beam and hyperfine inhomogeneities
on the collective spectra of grazing incidence thin-film cavities. Experimentally
obtainable beam divergences are of comparable order of magnitude to the angular
width of a cavity resonance. Therefore, in Section 7.1 we analyse the effects of
beam divergence on the observed energy spectra. Following this, in Section 7.2, we
examine the effect of inhomogeneous hyperfine interactions on the energy spectra,
taking collective Dicke dynamics into account.

7.1 Effect of angular divergence on collective spectra

In current theoretical models for grazing incidence scattering, the incident beam is
considered incredibly well collimated, such that it can be approximated as a plane
wave. The incident beam therefore excites a single spatial Fourier mode of the
waveguide. The accuracy of this approximation depends on the relative sizes of the
beam width in momentum space, to the width of a guided mode pole. In particular,
it must be the case that the spatially Fourier transformed Green’s function at the
nuclear position is approximately constant over the Fourier width of the beam.

Even though realistic input beams have divergences on the order of a few tens
of µrad, a typical guided mode pole is of comparable angular width. As such, the
different spatial Fourier components will have different collective couplings, and
the resulting energy spectrum must consider the average over the incident spatial
Fourier modes. In addition, it is not always possible to maintain a consistent angle
of incidence in an experiment. Especially at higher intensities, heating of the sample
and monochromators, as well as radiation pressure on the sample, can result in an
angle of incidence drift between shots.

Therefore, in order to model these effects, in Section 7.1.1, we derive the photo-
detection rate taking into account a distribution of angles of incidence. Then, in
Section 7.1.2 we demonstrate the effects of beam divergence and angular drift on
the observed energy spectra. We use as a point of experimental comparison exper-
imental data from beam-time ID HC-4028, ID18 at ESRF, November 2018, that
underwent significant angular drift.

73
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7.1.1 Photo-detection rate

The photo-detection rate per unit area at a point detector located r⃗d is given by the
detector efficiency multiplied by the number density of photons within the band-
width of the detector [60, Sec. 16.1]. The number density of a narrowband field can
be taken as intensity of the electromagnetic field incident at the detector location,
divided by the mean energy per photon, and thus we obtain:

dPd (t)
dA

=
[

ℏ𝜔0
I (r⃗d , t) =

[c
2ℏ𝜔0𝜖0

⟨︂
E⃗− (r⃗d , t) · E⃗+ (r⃗d , t)

⟩︂
, (7.1)

where [ is the detector efficiency, and we have noted that the nuclear response band-
width is far smaller than the photon energy, and is thus narrowband, allowing us to
approximate all incident photons as having energy ℏ𝜔0.

If we consider now a finite size detector, whose area is given by the surface S ( s⃗),
the photo detection rate is simply the integral of (7.1) over the detector surface,

Pd (t) =
[

ℏ𝜔0

∫
S

d2s I ( s⃗, t). (7.2)

If the detector is sufficiently large compared to the beam radius, we can assume
the entire photon count of the beam is captured, and take the limit S → ℝ2

∥ , i.e.
take the detector area to be the entire plane transverse to the beam axis,

Pd (t) =
[

ℏ𝜔0

∫
ℝ2
∥

d2s I ( s⃗, t). (7.3)

Using the beam coordinates of Section 6.2.1, such that ẑ is along the beam axis, we
can expand the field on the detector plane into spatial Fourier components

E⃗+ ( s⃗, zd , t) =
∫

d2q
(2𝜋)2

eiq⃗ · s⃗E⃗+ (q⃗ , zd , t) , (7.4)

where zd is the detector plane coordinate. Substituting back into (7.3) , we obtain

Pd (t) =
[c

2ℏ𝜖0

∫
d2q
(2𝜋)2

⟨︂
E⃗− (q⃗ , zd , t) · E⃗+ (q⃗ , zd , t)

⟩︂
. (7.5)

Therefore, the photo-detection rate is simply the integral of the photo-detection
rate for each Fourier mode.

Experimentally, the energy spectrum of the scattered field is measured by us-
ing a thin analyser foil mounted on an oscillating Doppler drive. The foil acts as
a bandpass filter with bandwidth on the order of 𝛾 , with the Doppler shift of the
oscillation shifting the filter peak. The full temporal response of this setup has been
analysed in great detail by Heeg [73], who demonstrated that the time integrated
photon counts of such a foil, for suitable time gating, is directly proportional to the
energy spectrum of the thin-film response. Therefore, for our purposes it is suffi-
cient to model the Doppler drive as an ideal frequency filter. This has the Fourier
domain transmission response

Tdrive (𝜔 , Δ) =T0𝛿 (𝜔 − Δ) , (7.6)
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where Δ is the detuning of the analyser Doppler drive, and T0 the transmission
coefficient. In time domain we therefore have

Tdrive (𝜏 , Δ) =T0e−iΔ𝜏 . (7.7)

The field incident on the detector is given by the convolution of the scattered field
with the analyser,

E+ (q⃗ , zd , t) =
∫

d𝜏bTdrive (t − 𝜏a , Δ)E⃗sc (q⃗ , zd , 𝜏b). (7.8)

Using this notation, we can see that the detection rate from a given Fourier compo-
nent is given by

Pd (q , t) ∝
∫

d𝜏a d𝜏bTdrive (t − 𝜏a , Δ)∗Tdrive (t − 𝜏b , Δ) (7.9)

×
⟨︂
E⃗sc ,− (q⃗ , zd , 𝜏a)E⃗sc ,+ (q⃗ , zd , 𝜏b)

⟩︂
= |T0 |2

∫
d𝜏a d𝜏b e

iΔ(𝜏a−𝜏b )
⟨︂
E⃗sc ,− (q⃗ , zd , 𝜏a) · E⃗sc ,+ (q⃗ , zd , 𝜏b)

⟩︂
.

The scattered field in the linear regime is given by the convolution of the reflectivity
with the incident field, times the phase factor ei𝜙dw accounting for the propagating
from waveguide to detector,

E⃗sc ,+ (q⃗ , zd , 𝜏b) = ei𝜙dw
∫

d𝜏d
←→
R (q⃗ , 𝜏b − 𝜏d) · E⃗in ,+ (q⃗ , zw , 𝜏d) , (7.10)

where zw is the z coordinate of the waveguide top layer. Therefore, the linear re-
sponse follows the same photon statistics as the incident beam. In particular, if we
assume multiplicative noise, such as phase noise, we have⟨︂

Eiin ,− (q⃗ , z, t)E
j
in ,+ (q⃗ , z, t

′)
⟩︂
= 𝛼 iin (q⃗ , z, t)

∗𝛼 jin (q⃗ , z, t)g1 (t − t
′) , (7.11)

where g1 is the normalized first order correlation function of the noise, and 𝛼in is
the average envelope of the beam. Because we must evaluate quantities involving
cumbersome contractions over polarization tensors, we have labelled the polariza-
tion indices i , j explicitly. Substituting (7.10) and (7.11) into (7.9) , we obtain

Pd (q , t) ∝ |T0 |2
∫ ⎛⎜⎝

∏︂
`=a,b ,c ,d

d𝜏`
⎞⎟⎠
(︃
eiΔ(𝜏a−𝜏b )Ri j (q⃗ , 𝜏a − 𝜏c)∗Rik (q⃗ , 𝜏b − 𝜏d)

× 𝛼 jin (q⃗ , 𝜏c)
∗𝛼kin (q⃗ , 𝜏d)g1 (𝜏c − 𝜏d)

)︃
. (7.12)

Expanding into Fourier components and integrating over the intermediate times
gives

Pd (q , Δ) ∝ |T0 |2Rjk (q⃗ , Δ)I jke f f (Δ) , (7.13)

where
Rjk (q⃗ , Δ) = Ri j (q⃗ , Δ)∗Rik (q⃗ , Δ) , (7.14)
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and the effective intensity tensor is the convolution of the coherent intensity with
the Fourier transformed coherence function,

I jke f f (q , Δ) =
c

2𝜖0

∫
d𝜔
2𝜋

𝛼
j
in (q⃗ , Δ − 𝜔)

∗𝛼kin (q⃗ , Δ − 𝜔)g1 (𝜔). (7.15)

One can clearly see that for a fully coherent beam this reduces to the Fourier trans-
formed intensity. For a sufficiently broad band excitation, we can assume Ie f f is
constant as a function of q. At this stage, we note that the measured intensity con-
sists of the average of many shots, and thus is insensitive to the nature of any angular
spread. Specifically, (7.15) holds for both short time angular spread i.e. due to the
intrinsic beam divergence of a single shot, and long time angular spread, i.e. an
angle of incidence drift between shots.

We therefore finally obtain for the photo-detection rate

Pd =
[c
ℏ𝜔0𝜖0

|T0 |2
∫

d2q
(2𝜋)2

Rjk (q⃗ , Δ)I jke f f (q). (7.16)

7.1.2 Numerical example

To begin with, we shall evaluate the full width at half maximum (FWHM) angu-
lar width of a guided mode. Splitting the guided mode wave-vector into real and
imaginary parts, we have

1
q − qr + iqi

(7.17)

for the Fourier space response of a pole in the Green’s function. The input field is
specified by its angle of incidence,

q = k0 cos \ . (7.18)

We therefore have
qr = k0 cos \0 (7.19)

as the angular representation of the pole resonance angle. Let us now consider an
incident field with a small deviation from this resonant angle,

q = k0 cos(\0 + d\). (7.20)

We then have
q ≈ k0 cos \0 − k0 sin \0d\ , (7.21)

for sufficiently small d\ . The Lorentzian response as a function of d\ is then given
by

1
q − qr + iqi

=
1

−k0 sin \𝛿\ + iqi
. (7.22)

The full width at half maximum is therefore given by

𝛿\ =
qi

k0 sin \0
. (7.23)

Now that we have the angular widths, we can proceed to consider the reflectivity ob-
servable, and how the relation between angular width of the resonances, and angular
divergence of the beam affects these.
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Reflectivity

As an example system, we consider a cavity with structure Pt (1.8 nm) / C (20.58 nm)
/ Stainless steel (0.53 nm) / C (24.45 nm) / Pt (15 nm). Such a cavity was used at
beam-time ID HC-4028, ID18 at ESRF, November 2018. For convenience, we
will refer to this structure by the name it was assigned during the experiment, ‘Cavity
E’.

The goal of this experiment was to demonstrate exceptional points in the col-
lective hyperfine spectrum, as the magnetic field of the nuclei was increased [99].
However, due to a larger than expected inhomogeneous quadrupole distribution in
the steel layer, as well as angular instability during the experiment, the effect was
not observable. The beam divergence could be configured between 20µrad and
200µrad, and 30µrad was the final selection. However, as we shall see, this is not
enough to explain the observed angular broadening. As each synchrotron shot has
on the order of single digit or less of average resonant photon counts per shot, even
typical repetition rates of hundreds of ns require on the order of an hour or more
to obtain statistically adequate photon counts. Thus, even a minor angular drift
can accumulate significantly over this duration, and one should in general consider
fitting a larger angular deviation that what was configuration.

Figure 7.1 gives the resonant angles and angular widths of the first three guided
modes of Cavity E, while Figure 7.2 gives its Fourier transformed Green’s function
evaluated at the layer coordinate, with a typical experimental FWHM highlighted.
It is clear to see that the angular widths are of comparable size to the beam diver-
gences, and as such it is questionable if a single mode approximation is valid. In
particular, for the first guided mode, the collective Lamb shift varies enormously
over the incident beams angular width, and thus the spectrum will not resemble
the single mode solution at all. This is illustrated dramatically in Figure 7.3, which
shows the theoretical reflectivity for a two-level resonant layer coupled to the first
guided mode, taking into account the incident beam divergence. As low as a 20µrad
beam divergence still results in a greatly exaggerated reflectivity wing, and gives the
impression of a lower collective broadening than actually occurs. The effect is far
more dramatic at 200µrad, with the spectrum distorted into appearing as a narrow
Fano profile.

Even with the larger angular width, there is a noticeable effect on the third
guided mode, Figure 7.4. The apparent collective Lamb shift and broadening is
less strongly reduced until the most extreme beam divergences, however the con-
trast of the Fano profile is reduced at larger beam divergences, giving the impression
of a higher cavity loss rate than is actually the case for the guided mode. As a result,
if one were to attempt fitting experimental data for this scenario, without taking into
account the beam divergence, one would make erroneous conclusions for the cavity
structure.

This is illustrated by the experimental energy spectra for Cavity E, Figures 7.7
and 7.8. This spectrum exhibited an isotropic quadrupole distribution, of approx-
imately 1.99𝛾 mean and 0.37𝛾 FWHM, and isomer shift of 1.98𝛾. In order to
qualitatively fit the experimental spectra, a beam divergence on the order of 50µrad
was required.

Thus, in this section, we have demonstrated that the single mode approximation
is not always valid at current experimental conditions. It is therefore crucial for the-
oretical predictions, and fits to experimental data compute the effects of a divergent
beam, or erroneous conclusions can be drawn.
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Figure 7.1: Angular positions and widths of the first three guided modes of Cavity
E. Highlighted is the observed total angular spread of 57.87µrad, which includes
the 30µrad beam divergence as well as the effect of angular instability.
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Figure 7.2: Fourier transformed Green’s function of Cavity E, evaluated at the res-
onant layer. Real part is proportional to the collective Lamb shift, while the imagi-
nary part is proportional to the super-radiant broadening. Highlighted are a 60µrad
interval around the peak location for the two strongly coupled guided modes, illus-
trating that the self-interaction of the nuclei is not constant within the spatial band-
width of the input beam.
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Figure 7.3: Divergence averaged reflectivity for beam incident at the first guided
mode. Due to the incredibly narrow resonance, Figure 7.2, even relatively small
beam divergences result in large distortions of the spectrum.
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Figure 7.4: Divergence averaged reflectivity for beam incident at the first guided
mode. Due to the larger angular width of the resonance, Figure 7.2, the effect is
qualitatively less dramatic than Figure 7.3, nevertheless it is strong enough that one
must clearly factor this in to curve-fitting and theoretical predictions.
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Figure 7.5: Sample of three of the reflectivity components that are averaged for a
20µrad beam divergence, incident at the first guided mode. Due to the dramatic
change in collective Lamb shift seen in Figure 7.2, the spectra for angular deviation
either side of the peak are mirrored, and thus the average distorts the line-shape
completely.
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Figure 7.6: Sample of three of the reflectivity components that are averaged for a
20µrad beam divergence, incident at the third guided mode. As one deviates from
the resonance, the contrast of the Fano profile reduces, and thus the average of the
spectra gives a misleadingly low contrast for the peak location.
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Figure 7.7: Experimental data for cavity E, measured close to third guided mode
resonance. The hyperfine spectrum exhibited an isotropic quadrupole splitting,
with a distribution of widths. A qualitative fit was only possible taking beam diver-
gence into account. Fitting the low contrast centre of the peaks remains a challenge
however.
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Figure 7.8: Experimental data for cavity E, measured slightly away from third
guided mode resonance.



82 CHAPTER 7. GRAZING INCIDENCE

7.2 Superradiance and inhomogeneous hyperfine fields
In this section, we will consider the effects of inhomogeneous hyperfine distribu-
tions on the collective response of nuclei in grazing incidence. For a single Fourier
mode interacting with identical nuclei, the grazing incidence equations of motion
reduce to the Dicke model. However, the layers of the thin-film nano-structures are
formed through vacuum sputter deposition, and thus have inhomogeneous hyper-
fine fields throughout their extent. Nevertheless, in Appendix B.1 we demonstrate
that for such systems, we can use the coherent average of the individual susceptibil-
ities to model the inhomogeneous broadening. Therefore, the positive frequency
field evaluated at the resonant layer obeys the equation

B⃗+ (q , z0 , 𝜔) = B⃗in (q , z0 , 𝜔)

− `0k2
0L𝜌N GTE (q , z0 , z0 , 𝜔0)

←→
𝟙 · ←→𝜒 (𝜔) · B⃗+ (q , z0 , 𝜔) , (7.24)

where for a probability distribution p( a⃗) of n hyperfine parameters a⃗ we have

←→
𝜒 + (𝜔) =

∫
dna p( a⃗)←→𝜒 + ( a⃗ , 𝜔) , (7.25)

with←→𝜒 ( a⃗ , 𝜔) the susceptibility evaluated for a particular set of parameters.
We wish to find the collective susceptibility of the nuclear ensemble. To do this,

we first define the dimensionless response tensor

←→
F (𝜔) = 1

f0

←→
𝟙 ⊥ · ←→𝜒 + (𝜔) ·

←→
𝟙 ⊥ , (7.26)

f0 =
2𝜋 fLM
1 + 𝛼

2Ie + 1
2Ig + 1

`0

k3
0

, (7.27)

where the factor of f0 eliminates the overall prefactor of 𝜒 . Additionally, projection
onto the polarization subspace allows us to eliminate these projectors from the rest
of the equations of motion. Let us also define the collective enhancement factor,

Z = k2
0Lf0 𝜌N GTE (q , z0 , z0 , 𝜔0) (7.28)

= − f0 𝜌NLGmm (q , z0 , z0 , 𝜔0).

The field is then given by

B⃗+ (q , z0 , 𝜔) = B⃗in (q , z0 , 𝜔) − Z
←→
F (𝜔) · B⃗+ (q , z0 , 𝜔). (7.29)

This then has the solution

B⃗(q , z0 , 𝜔) =
(︂←→
𝟙 + Z←→F (𝜔)

)︂−1
· B⃗in (q , z0 , 𝜔). (7.30)

For systems with isotropic response tensors, we can treat F(𝜔) as scalar, and this
can be simplified to

B⃗(q , z0 , 𝜔) = B⃗in (q , z0 , 𝜔)
1 + ZF(𝜔) . (7.31)

Finally, the scattered response is given by

B⃗sc (q , z0 , 𝜔) = −Z←→F (𝜔) ·
(︂←→
𝟙 + Z←→F (𝜔)

)︂−1
· B⃗in (q , z0 , 𝜔). (7.32)
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Thus, for the collective susceptibility, we obtain,

←→
𝜒 coll (𝜔) = 𝜒0

←→
F (𝜔) ·

(︂←→
𝟙 + Z←→F (𝜔)

)︂−1
, (7.33)

𝜒0 =
Z

`0 𝜌N
. (7.34)

For the rest of this chapter, we will consider the collective susceptibility only, and
therefore refer to this simply as 𝜒 from now on. The single particle susceptibilities
of the individual nuclei are implicitly contained in F (𝜔).

For the particular case of a two-level system, the nuclear response tensor is
isotropic (see Appendix B.3), and can be treated as scalar. Thus we have

F(𝜔) = 𝛾0

𝜔 + i𝛾0
, (7.35)

where for convenience we have labelled the half width at half maximum (HWHM)
line-width as 𝛾0 = 𝛾/2. The collective response is then given by

𝜒 (𝜔) = 𝜒0
F(𝜔)

1 + ZF(𝜔) = 𝜒0
𝛾0

𝜔 + i𝛾0 + Z 𝛾0
. (7.36)

If we define
J + iΓ = Z 𝛾0 , (7.37)

we can see that this gives us the expected collective Lamb shift and broadening,

𝜒 (𝜔) = 𝜒0

𝜔 + i𝛾0 + J + iΓ
. (7.38)

Now that we have seen how to obtain the collective response, let us proceed in the
following sections to consider some explicit examples of collective responses for
inhomogeneously broadened systems.

7.2.1 Gaussian broadening for two level systems

As an illustrative example, we consider a layer of resonant Mössbauer nuclei with a
Gaussian distribution of the isomer shift 𝛿. Such Gaussian distributions of hyper-
fine parameters are typical of amorphous solids [100–102]. For simplicity, we will
consider the other hyperfine splittings to be negligible.

The isomer shift affects all excited states equally, and the distribution does not
affect the dipole vectors or the natural line-widths. As we are taking the other hyper-
fine splittings to be negligible, all states with a given nuclear spin I are degenerate,
and we can model the system as having a single transition. As a result, the suscep-
tibility is isotropic. We therefore find that the average nuclear response tensor is
given by

F(𝜔) =
∫

d𝛿 p(𝛿) 𝛾0

𝜔 − 𝛿 + i𝛾0
. (7.39)

With a Gaussian distribution,

p(𝛿; �̄� , 𝜎) = 1
√

2𝜋𝜎2
exp

(︄
− (𝛿 − �̄�)2

2𝜎2

)︄
, (7.40)
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this evaluates to a Voigt profile [103, Eq. 7.19],

F(𝜔) = f0
𝛾
√

2𝜎
w

(︃
𝜔 − �̄� + i𝛾0√

2𝜎

)︃
, (7.41)

where

w (z) = −i
√
𝜋 exp

(︂
−z2

)︂
(erfh(z) − i). (7.42)

The collective susceptibility is then given by

𝜒 (𝜔) = 𝜒0
F(𝜔)

1 + 𝛾−1
0 ( J + iΓ)F(𝜔)

. (7.43)

The interaction of the coherent collective coupling J , and the broadening 𝜎 is par-
ticularly interesting. Unlike the case of purely collective broadening Γ, for signifi-
cant distribution widths 𝜎 the coherent coupling factor J no longer acts as a simple
Lamb shift. Indeed, if J were to act as a Lamb shift one would expect instead a
susceptibility of

𝜒 (𝜔) = 𝜒0F(𝜔 + J + iΓ) , (7.44)

with a simple translation and broadening. Instead, the peak of the spectrum is
shifted slightly further than it would be in the absence of the Gaussian broaden-
ing, and is asymmetrically distorted. This is shown in Fig. 7.10 which presents the
ratio | 𝜒 (𝜔)/ 𝜒0 |2 as a function of 𝜔 for three distributions widths 𝜎.

At this point we find it interesting to compare our linear regime results with
the work of Javanainen et al [104, 105] and Jenkins et al [106], who have exam-
ined the effect of inhomogeneous broadening on strongly coupled atomic clouds
near saturation. In this regime, local spatial correlations become significant, and
permutation symmetry no longer applies. They found that the local correlations
in homogeneously broadened systems suppresses the Lorentz-Lorenz and collec-
tive Lamb shifts, while inhomogeneous broadening restores the super-radiant mean
field dynamics [104]. We note that the case of inhomogeneous broadening shows
some qualitative similarity to our linear regime result, Fig. 7.10, where we observe
a larger peak shift for inhomogeneous broadening vs. the unbroadened case.

For illustrative purposes, we have used values of J , Γ in the range (0−10)𝛾 , (3−
5)𝛾0, typical of x-ray cavities. For example, using the dyadic Green’s function to
simulate the single line spectrum, we find the cavity in Figure 7.9 has J = 8.5𝛾0
and Γ = 3.36𝛾0 at an incident angle of 2.32 mrad, corresponding to just below the
first reflection minimum. Going exactly to the first minimum gives J = 5.5𝛾0, and
increases Γ significantly to Γ = 18.6𝛾0. At an angle of 3.35 mrad, corresponding
to the third reflection minimum, we have J = 1.79𝛾0 and Γ = 3.37𝛾0. Typical
hyperfine distribution widths are between (0−5)𝛾0. In optical contexts (for example
Doppler broadening in atomic clouds, or size inhomogeneity in quantum dots), we
would expect that the distribution widths could be substantially larger.

For significant distribution widths 𝜎 ≫ 𝛾0, the line shape is that of a broad,
almost Gaussian profile. However, as the collective coupling J is increased, as well
as being shifted and skewed, the effective line-width tends to that of the incoherent
coupling Γ. Figure 7.11 illustrates this behaviour for increasing coherent collective
coupling J .
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Figure 7.9: Field profile in a typical grazing incidence cavity, driven at the third
guided mode. Cavity structure is Pt 2.8 nm/C 22 nm/ 57SS 0.6 nm/ C 22.5 nm/Pt
15 , where 57SS refers to 57Fe enriched stainless steel.

7.2.2 Interference effects for magnetic splitting

Let us now consider the case of magnetic splitting in 57Fe with no isomer shift and
an x-ray field which drives the two me − mg = 0 transitions as shown in Figure 2.1.
The energies of these two transitions are detuned by ±𝜙 = ±1

2 (`e − `g )Bhf , where
`g , `e are the nuclear magnetic dipole moments for the ground and excited states
respectively. For a single Fourier mode interacting with identical nuclei, the graz-
ing incidence equations of motion reduce to the Dicke model. In particular, in the
linear regime, one can assign Bosonic operators to the collective transition opera-
tors [107], ∑︁

i

Π̂
(i )
` j e

iqxi ≈

√︄
N

2Ie + 1
b` j , (7.45)

where q is the incident wave-vector, and N is the total number of nuclei. These
Bosonic operators obey [107]

[b` j , b†`′ j′ ] = 𝛿``′𝛿 j j′ . (7.46)

As we have two participating transitions, we will label them b1 , b2. It can be shown
that these collective transition operators then obey the equation of motion [107]

H = ℏ𝜙(b†1b1 − b
†
2b2) − ℏJ (b

†
1 + b

†
2) (b1 + b2) + ℏΩ(b

†
1 + b

†
2) + h.c (7.47)

with Lindblad operator

L[𝜌] = −𝛾0

∑︁
i=1,2

L[𝜌, b†i , bi ] − Γ
∑︁

i , j=1,2

L[𝜌, b†i , b j]. (7.48)

The superradiant response of such a system was investigated by Kong and Pálffy [38]
using an eigenvalue method. It was found that if the splitting 𝜙 is less than the inco-
herent part of the collective coupling Γ, the contributions from the two transitions
interfere. The resulting spectrum has an interference dip in the peak, similar to
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Figure 7.10: Collective spectrum | 𝜒 (𝜔)/ 𝜒0 |2 as a function of the frequency 𝜔 for
J = 5𝛾0 and three different distribution widths 𝜎. The peak is shifted further as
the broadening is increased, and the shape is distorted.
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Figure 7.11: Collective spectrum | 𝜒 (𝜔)/ 𝜒0 |2 as a function of the frequency 𝜔 for
𝜎 = 10𝛾0 and three different collective coupling values J . With increasing coherent
collective coupling J the shape of the spectrum is distorted asymmetrically, and the
effective line-width tends to Γ.
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electromagnetically induced transparency (EIT) [10], with the collective coupling
J playing the role of a control field. In addition, the coherent part of the collective
coupling, J , was found not to act as a simple Lamb shift, but in fact non-trivially
couple with the magnetic splitting, producing asymmetric, Fano-like spectra.

We now consider this system with the addition of a Gaussian distribution of
magnetic field strengths across the sites. For a given site with splitting 𝜙, the re-
sponse matrix is given by [38]

F(𝜔; 𝜙) = 2𝛾 (𝜔 + i𝛾0)
(𝜔 + i𝛾0)2 − 𝜙2

. (7.49)

In the case of a completely uniform magnetic field, the collective susceptibility is
therefore given by

𝜒 (𝜔) = 𝜒0
2𝛾0 (𝜔 + i𝛾0)

(𝜔 + i𝛾0)2 + 2( J + iΓ) (𝜔 + i𝛾0) − 𝜙2
. (7.50)

This has two poles in the denominator,

𝜔± = −i𝛾0 − J − iΓ ±
√︃
( J + iΓ)2 + 𝜙2. (7.51)

When the collective coupling is completely incoherent, J = 0, the discriminant
becomes

√︁
𝜙2 − Γ2. We can see that if 𝜙 < Γ, the argument of the square root

becomes negative, and the poles become purely imaginary, describing overlapping
Lorentzians with differing linewidths. This results in an EIT like dip. This be-
haviour is illustrated in Fig. 7.12 which presents the susceptibility ratio | 𝜒 (𝜔)/ 𝜒0 |2
as a function of 𝜔 for four different values of the Gaussian distribution width 𝜎.

If we now consider the magnetic splitting to have a Gaussian distribution of
width 𝜎 , and mean �̄�, applying Equations (7.25) and(7.41) gives

F(𝜔) =
∫

d𝜙 p(𝜙; �̄�, 𝜎)F (𝜔; 𝜙)

=
𝛾0√
2𝜎

(︃
w

(︃
𝜔 − �̄� + i𝛾0√

2𝜎

)︃
+w

(︃
𝜔 + �̄� + i𝛾0√

2𝜎

)︃)︃
,

(7.52)

with w(z) given by Equation (7.42) . The susceptibility is as before given by

𝜒 (𝜔) = 𝜒0
F(𝜔)

1 + 𝛾−1
0 ( J + iΓ)F(𝜔)

. (7.53)

The overall envelope of the spectrum resembles that of the homogeneous case, and
if the distribution width 𝜎 is narrow compared with Γ, �̄�, we can see that the inten-
sity minimum is still resolvable. However, increasing the distribution width gradu-
ally flattens the dip, and results in a flat, broad peak as shown in Figure 7.12.

More interesting is the effect of different strengths of the coherent collective
coupling J . Rather than acting as a simple Lamb shift, the overall spectral shape
is changed. One peak is flattened as the other increases, with large J resulting in
a completely asymmetric picture with only a single one of the contributions being
resolved. This can be seen in Figure 7.13 which presents the same dependence
as Figure 7.12 but this time for different values of J . While the peak locations are
somewhat shifted, the shapes are distorted as well, and the location of the minimum
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Figure 7.12: Comparison of collective spectrum | 𝜒 (𝜔)/ 𝜒0 |2 as a function of the
frequency 𝜔 for Γ = 5𝛾0, J = 0, with mean splitting �̄� = 17𝛾0 and various values
of distribution width 𝜎. As the distribution width increases, the dip is washed out
to a very flat and broad peak.

is unchanged. This is in contrast to the single line case, where J acts as a pure Lamb
shift.

This holds even when the distribution width is large enough that the minimum
is not resolved, as shown in Fig. 7.14. For vanishing collective coupling, J = 0,
the two peaks are merged, and the effective linewidth is very broad. Increasing J
results in the left peak growing while the right peak diminishes, and for significant
J only the left peak is individually resolved, with the line-width approaching 2Γ.
The result is an increase in the effective resolution of the spectrum, with an energy
shift. As the coherent coupling strength is controlled via the angle of incidence of
the driving field [39, 74], this provides a mechanism for mechanical control of the
line-width of such a sample.

To understand this, we consider the matrix form of the corresponding equation
of motion,

M
(︃
b1 (𝜔)
b2 (𝜔)

)︃
=

(︃
Ω(𝜔)
Ω(𝜔)

)︃
(7.54)

with

M = ( J + iΓ)
(︃
1 1
1 1

)︃
+

(︃
𝜙 + i𝛾0 0

0 −𝜙 + i𝛾0

)︃
. (7.55)

and Ω(𝜔) = ℏ−1m0Bin (𝜔).
If J is large enough compared with 𝜙, 𝛾0, we may treat the second term as a

small perturbation of the first. The eigenvectors of M are then given by

ê± =
1
√

2

(︃
1
±1

)︃
+ O(𝜙) , (7.56)

with eigenvalues
_+ = 2( J + iΓ) + O(𝜙) , _− = O(𝜙) (7.57)

The driving term couples to b1 , b2 equally, and is thus proportional to ê+. Therefore,
only the symmetric state ê+ is strongly driven, and we will expect to see a single peak,
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Figure 7.13: Comparison of collective spectrum | 𝜒 (𝜔)/ 𝜒0 |2 as a function of the
frequency𝜔 for small incoherent coupling Γ = 5𝛾0, a small distribution width value
𝜎 = 3.5𝛾0, mean splitting �̄� = 17𝛾0 and varying values of coherent collective
coupling J .

with a Lamb shift of 2J and a broadening of 2Γ. If the collective broadening Γ is
significantly lower than the distribution width 𝜎 , we will then see a reduction in
the effective line-width. This has potential applications in samples with significant
magnetic texture, with the beam angle of incidence on the sample being used to
control the collective coupling, and hence the effective line-width.
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Figure 7.14: The same as Fig. 7.13 but here for a wider distribution width 𝜎 =

14𝛾0.



Chapter 8

Forward scattering

In this chapter, we demonstrate how nuclear forward scattering can be modelled
in the Green’s function approach. We begin in Section 8.1 with a re-derivation of
ordinary nuclear forward scattering within the Green’s function approach, such that
we may use it as a point of comparison with waveguide front coupling. By doing
so, we demonstrate that the same model that describes collective Rabi oscillation in
the atomic optics case [16, 108–110] also applies to the dynamical beat of nuclear
forward scattering, and thus these two terms describe the same phenomenon.

Following this, in Section 8.2 we analyse waveguide front coupling, and demon-
strate how this leads to analogous equations of motion to nuclear forward scattering
in the single mode regime. We then proceed to consider the multiple mode regime,
and consider two extremes of coupling strength: one where electronic scattering is
far larger than nuclear scattering, and one where it is far smaller. Using perturbation
theory, we show that in the strong nuclear scattering regime, the mode coupling to
the nuclei leads to formation of a single opaque mode, with the remaining modes
being transparent to the nuclei.

Finally, in Section 8.3, we study in depth the interference effects that occur in
the two mode regime, and demonstrate that this can be used to implement models
of super-radiance and sub-radiance from atomic optics.

8.1 Nuclear forward scattering in the Green’s function
approach

We will begin by demonstrating how the ordinary nuclear forward scattering equa-
tions can be derived using the Green’s function approach. For simplicity, we will
work in free space, however in a homogeneous medium one simply needs to sub-
stitute

k =
𝜔

c
→ k =

n𝜔
c

, (8.1)

where n is the refractive index of the medium.
We begin with the dyadic Green’s function for free space,

←→
G (r⃗ , r⃗ ′ , 𝜔) =

∫
d3q
(2𝜋)3

←→
𝟙 − q̂ ⊗ q̂
q2 − k2

eiq⃗ · (r⃗−r⃗
′ ) . (8.2)
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The corresponding magnetic Green’s function is given by
←→
G mm (r⃗ , r⃗ ′ , 𝜔) = ∇ ×

←→
G (r⃗ , r⃗ ′ , 𝜔) × ∇′ (8.3)

= −
∫

d3q
(2𝜋)3

q2
←→
𝟙 − q̂ ⊗ q̂
q2 − k2

eiq⃗ · (r⃗−r⃗
′ ) ,

where we have used

q̂ × q̂ = 0, (8.4)

q̂ ×←→𝟙 × q̂ = −(←→𝟙 − q̂ ⊗ q̂). (8.5)

We consider an incident beam propagating in the positive x direction, and uniform
in the y , z plane,

B̂in (r⃗ , t) = e−i (𝜔0t−k0x)B0 (x , t) ê, (8.6)

where ê is the polarization vector of the incident beam, and B0 (x , t) the slowly vary-
ing beam envelope. We can similarly replace the scattered field and nuclear mag-
netization as a slowly varying envelope times plane wave phase,

B̂sc ,+ (x , 𝜔) → B̂sc ,+ (x , 𝜔)eik0x , (8.7)

m̂+ (x , 𝜔) → m̂+ (x , 𝜔)eik0x . (8.8)

As the incident beam is uniform in y , z, so is the induced nuclear magnetization,
and thus the scattered response envelope is given by

B̂sc ,+ (x , 𝜔) = `0 𝜌N

∫
d3r ′ e−ik0 (x−x

′ )←→G mm (r⃗ , r⃗ ′ , 𝜔) · ←→𝜒 + (𝜔) · B̂+ (x′ , 𝜔) (8.9)

= `0 𝜌N

∫
dx′
←→
G 1D (x − x′ , 𝜔) · ←→𝜒 + (𝜔) · B̂+ (x′ , 𝜔) ,

where
←→
G 1D (x − x′ , 𝜔) =

∫
dy′ dz′

←→
G mm (r⃗ − r⃗ ′ , 𝜔) (8.10)

= −
∫

dq
2𝜋
q2
←→
𝟙 − x̂ ⊗ x̂
q2 − k2

eiq (x−x
′ ) .

This can be evaluated using contour integration. In order to enforce outward prop-
agating boundary conditions, we displace the pole at q = k to k + i0+, and q = −k to
−k − i0+. We then close contour in the positive upper half plane for x > x′, and the
lower half plane for x < x′. This gives

←→
G 1D (x − x′ , 𝜔) = −

ik
2
(←→𝟙 − x̂ ⊗ x̂)eik |x−x′ | (8.11)

As discussed in Section 6.3.1, we must consider the dispersion of the Green’s func-
tion over the resonant bandwidth of the nuclei. Firstly, we can see that the phase has
the linear dispersion discussed in Section 6.3.1, that cannot be neglected, in order
to properly account for the retarded time.

Secondly, we see that the prefactor of k has a linear dispersion, leading to the
series expansion

←→
G 1D (x − x′ , 𝜔 + 𝜔0) ≈ −

←→
𝟙⊥
ik0
2
eik0 |x−x

′ |+i𝜔c−1 |x−x′ |

(︄
1 + 𝜔

𝜔0
+ O

(︄
𝜔2

𝜔2
0

)︄)︄
. (8.12)
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Since the resonant bandwidth is on the order of 10−12𝜔0, we can safely neglect the
dispersion in the envelope. We therefore have the following equation of motion for
the scattered field envelope:

B̂sc ,+ (x , 𝜔) = i `0k0 𝜌N
2

∫
dx′ ei (k0+

𝜔
c ) |x−x

′ | e−ik0 (x−x
′ ) m̂+ (x′ , 𝜔). (8.13)

There are two contributions: the forward scattering contribution from x′ < x, and
the back scattering from x′ > x. The back scattering contribution will have a phase
factor in the integrand of e−2ik0x′ , which we assume is outside the bandwidth of our
envelopes. We therefore neglect the back scattering,

B̂sc ,+ (x , 𝜔) ≈ i `0k0 𝜌N
2

∫ x

0
dx′ ei

𝜔
c (x−x

′ ) m̂+ (x′ , 𝜔). (8.14)

Inverting to time domain, we obtain the nuclear forward scattering equation in in-
tegral form,

B̂sc ,+ (x , t) = i `0 𝜌Nk0
2

∫ x

0
dx′ m̂+ (x′ , t − c−1 (x − x′)). (8.15)

Taking a spatial derivative gives

𝜕xB̂sc ,+ (x , t) = i `0 𝜌Nk0
2

m̂+ (x , t) − c−1𝜕tB̂sc ,+ (x , t) , (8.16)

which can be rearranged to give a paraxial Maxwell’s equation for the field envelope,

(𝜕x + c−1𝜕t)B̂+ (x , t) = i `0 𝜌Nk0
2

m̂+ (x , t) , (8.17)

where we have used the fact that the input field is the homogeneous solution,

(𝜕x + c−1𝜕t)B̂in (x , t) = 0, (8.18)

to substitute the scattered field with the total field.
The time derivative from the retarded time can be eliminated with the coordi-

nate transformation

t → tr = t −
x
c

, (8.19)

x → x , (8.20)

𝜕t → 𝜕tr , (8.21)

𝜕x → 𝜕x − c−1𝜕tr . (8.22)

We finally obtain

𝜕xB̂+ (x , 𝜏) = i `0 𝜌Nk0
2

ê∗in · m̂+ (x , 𝜏) , (8.23)

with m̂(x , 𝜏) obeying the nuclear Bloch equations (6.14) through (6.17) , under the
substitution 𝜕t → 𝜕tr .
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8.1.1 Fourier space solution

Using the Fourier space expression for the magnetization

m̂+ (x , 𝜔r ) = −←→𝜒 + (𝜔r ) · êinB̂+ (x , 𝜔r ) , (8.24)

we have

𝜕xB̂+ (x , 𝜔r ) = −i
k0
2
F (𝜔r )B̂+ (x , 𝜔r ) , (8.25)

where 𝜔r is the Fourier dual of the retarded time tr , and the dimensionless response
function

F (𝜔) = `0 𝜌N ê∗in ·
←→
𝜒+ (𝜔) · êin . (8.26)

The solution of this equation of motion is

B̂+ (x , 𝜔r ) = exp
(︃
−i k0x

2
F (𝜔r )

)︃
B̂in (0, 𝜔r ) , (8.27)

where we have used the fact that the scattered field at the initial position x = 0 is
zero, to rewrite the boundary condition in terms of B̂in only. For a broadband pulse,
we can approximate the Fourier transformed field as uniform over the bandwidth
of the nuclei, and take

B̂in (0, tr ) ≈
Bin
Γin

𝛿 (tr ) , (8.28)

where Γin is the bandwidth of the incident field.

8.1.2 Two level solution in time domain

Under the two level regime, using equation (B.31) we obtain

F (𝜔) = 𝜌N
𝜎0

k0
· fLM

1 + 𝛼 ·
2Ie + 1
2Ig + 1

· 𝛾/2
𝜔 + i𝛾/2 = 𝜌N

𝜎rad

k0

𝛾/2
𝜔 + i𝛾 , (8.29)

where we have defined the partial radiative cross-section

𝜎rad =
2Ie + 1
2Ig + 1

𝜎0

1 + 𝛼 . (8.30)

Thus we see that the response function is identical to that of Kagan [68, eq. 3.1,
3.2], demonstrating that macroscopic Green’s function formalism can reproduce
results of the single photon scattering theory. The solution to (8.27) , (8.28) , (8.29)
is given by [68, 79]

B̂+ (x , tr ) =
Bin
Γin

(︃
𝛿 (tr ) − e−𝛾tr/2𝛾b

J1 (2
√
b 𝛾tr )√

b 𝛾tr

)︃
, (8.31)

where J1 is a Bessel function of the first kind, and

b =
𝜌N𝜎radx fLM

4
(8.32)

is the dimensionless ‘effective resonant length’ [68, 70]. We note that the only dif-
ference between our solution and Kagan’s is the substitution of the real time with
the retarded time, which is to be expected as Kagan considered thin foils, and thus
neglected propagation delays.
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8.1.3 Comparison to collective Rabi oscillations

In the atomic optics literature, the oscillation in the scattered field of dense en-
sembles of atoms is referred to as ‘collective Rabi oscillation’ [16, 108–110]. The
theoretical models used to describe this use the Green’s function coupled dipole-
dipole approach, and as such are equivalent to the model we have considered in
this section. In particular, Svidzinsky [16] derived the solution for collective Rabi
oscillations due to a plane wave excitation of a dense linear chain of atoms, and ob-
tained the same expression as (8.31) . As he included the effects of time delay in his
model, his expression also included the retarded time delay. Thus, we can clearly
see that the dynamical beat of nuclear forward scattering is the same phenomenon
as collective Rabi oscillation, and can be modelled using the same Green’s function
approach.

8.2 Waveguide forward scattering
We now turn our attention back to the multi-layer waveguide. We will demonstrate
that under front coupling, such that a single resonant mode is excited, the resulting
equations of motion result in forward scattering equations similar to those of 8.1.

8.2.1 Two-dimensional problem

We consider an incident pulse propagating along x, that is uniform along y. The res-
onant nuclei are placed in a thin layer of thickness L in the plane z = z0. We assume
the layer is sufficiently thin that we can take the nuclei to have a delta distribution in
the z coordinate.

Due to the uniformity in y, and the thin layer, we may substitute

m̂(r⃗ , t) → L𝛿 (z − z0)m̂(x , t) (8.33)

B̂(r⃗ , t) → B̂(x , z, t) , (8.34)

thus making the problem two-dimensional.
The scattered positive frequency field of the nuclei satisfies

B̂sc ,+ (x , 𝜔) = −`0 𝜌NL
∬

dx′ dy′
←→
G mm (x− x′ , y− y′ , z, z0 , 𝜔) · m̂+ (x , 𝜔). (8.35)

The Fourier representation of
←→
G mm (r⃗ , r⃗ ′) in Cartesian coordinates is explicitly

←→
G mm (x−x′ , y−y′ , z, z′ , 𝜔) =

∬ ∞

−∞

dqx
2𝜋

dqy
2𝜋

eiqx (x−x
′ ) eiqy (y−y

′ )←→G mm (qx , qy , z, z′ , 𝜔) ,
(8.36)

where we distinguish between the Fourier and real space quantities by their argu-
ment.

Due to cylindrical symmetry, the Green’s function can be written in the form

←→
G mm (qx , qy , z, z′ , 𝜔) =U (𝜙q)

←→
G mm (q , 0, z, z′ , 𝜔)U (𝜙q)† , (8.37)

whereU (𝜙) is a rotation matrix, and

qx = q cos
(︁
𝜙q

)︁
, qy = q sin

(︁
𝜙q

)︁
. (8.38)
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Integrating out the y′ coordinate gives∫
dy′ eiqy (y−y

′ ) = 2𝜋𝛿 (qy)eiqyy . (8.39)

To evaluate the integral over the Dirac delta, we make use of the following pull-back
identity, ∫

dnr f (r⃗)𝛿 (g (r⃗)) =
∫
Ω

d`( s⃗) f ( s⃗)|∇g | , (8.40)

whereΩ is the surface defined by g (r⃗) = 0, and d`( s⃗) is the induced surface measure
with respect to the choice of surface parameterization s⃗. In our case, g (q , 𝜙q) =
q sin

(︁
𝜙q

)︁
, with the zero hyper-surface given by the line 𝜙q = 0. The induced surface

measure is merely the Euclidean measure dq. We also have

∇g = sin
(︁
𝜙q

)︁
�̂�q + cos

(︁
𝜙q

)︁
q̂ , |∇g | = 1. (8.41)

Thus, we have the following identity,∫
d2q 𝛿 (q sin

(︁
𝜙q

)︁
) f (q , 𝜙q) =

∫ ∞

−∞
dq f (q , 0). (8.42)

Finally, applying this to our Green’s function allows us to obtain the effective two-
dimensional Green’s function for the resonant layer,

←→
G 2D (x − x′ , z, z′ , 𝜔) =

∫ ∞

−∞

dq
2𝜋
eiq (x−x

′ )←→G 2D (q , z, z′ , 𝜔) , (8.43)

where
←→
G 2D (q , z, z′ , 𝜔) =

←→
G mm (q , 0, z, z′ , 𝜔) ≈ −k2←→G (q , 0, z, z′ , 𝜔). (8.44)

With the relevant Green’s function in hand, let us now examine the nucleus-field
coupling.

8.2.2 Coupling to nuclei

We begin with the mode decomposition of the waveguide Green’s function,

←→
G 2D (q , z, z′ , 𝜔) = −k2

∑︁
_

∫
dq
2𝜋
←→
G _ (q⃗ , z, z′ , 𝜔)eiq⃗ · (r⃗ ∥−r⃗

′
∥ ) − k2←→G rad (q , z, z′ , 𝜔).

(8.45)
As per Chapter 4, we have

←→
G _ (q , z, z′ , 𝜔) =

←→g_ (z, z′ , 𝜔)
q − q_ (𝜔)

+ c.c., (8.46)

where q_ is the wave-vector of the mode, and the residue is given by

←→g_ (z, z′ , 𝜔) ≈
←→
𝟙 ⊥

i
2q_

u_ (z, 𝜔)u_ (z′ , 𝜔) , (8.47)

where u_ is the mode function normalized according to (4.99) . Due to the nor-
malization, the product u_ (z)u_ (z′) has the dimension of inverse length, thus←→g_ is
dimensionless.
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Figure 8.1: Dispersion of first guided mode residue for a molybdenum waveguide,
with nuclear bandwidth highlighted and zoomed in bottom panel. We can see that
there is no conceivably observable dispersion.

As one can see in Figures 8.1 and 8.2, the dispersions of both the mode residue
g_ and mode wave-vector q_ are negligible over the resonant bandwidth of the nu-
clei, with a fractional variation on the order of 10−6 for q_ and essentially zero for
g_ . We can therefore take

←→
G _ (q , z, z′ , 𝜔) ≈

←→
G _ (q , z, z′ , 𝜔0). (8.48)

We will therefore drop the frequency argument of u_ , q_ etc. from our notation,
and assume they are evaluated at 𝜔0.

The magnetic field can be expanded into the basis of eigenmodes,

B̂+ (x , z, t) =
∑︁
_

B̂_ (x , t)u_ (z) + B̂rad (x , z, t) , (8.49)

and due to the orthonormality of eigenmodes, we can see that the scattered response
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Figure 8.2: Dispersion of first guided mode wave-number for a molybdenum
waveguide, with nuclear bandwidth highlighted and zoomed in bottom panel.
There is only a small linear dispersion of approximately 10−6k0, and thus the cor-
responding phase velocity is exceedingly large. As such, propagation delays can be
neglected.

of each mode is given by

B̂sc ,_ (x , 𝜔) = `0 𝜌NL
ik2

0

2q_
u_ (z0)

∫
dx′ eiq_ |x−x

′ |←→𝟙 ⊥ · m̂+ (x′ , 𝜔). (8.50)

In turn, the magnetization is given by

m̂+ (x , 𝜔) = −←→𝜒 + (𝜔) ·
∑︁
_

u_ (z0)B̂_ (x , 𝜔). (8.51)

Thus, the magnetization is coupled to each resonant mode proportional to the value
of its mode function at the resonant layer, as expected. We will now proceed to
derive and solve the equation of motion of a single mode waveguide, which is the
simplest model to consider.



8.2. WAVEGUIDE FORWARD SCATTERING 99

8.2.3 Single mode solution

If the waveguide is sufficiently thin, only the first one or two modes are supported.
The nuclear layer can then be placed at the anti-node of the fundamental mode, with
higher modes suppressed. Then, one can neglect the other modes, and consider the
single mode problem.

In this regime, we find that

B̂_ (x , 𝜔) = −i
k2
0L

2q_
F (𝜔)u_ (z0)2

∫ x

0
dx′ eiq_ (x−x

′ ) B̂_ (x , 𝜔) , (8.52)

with F (𝜔) the response function defined in (8.29) .
We can see our first figure of merit: the relative coupling strength. We saw that

for nuclear forward scattering, the prefactor was

− ik0
2
F (𝜔) , (8.53)

while for front coupling it is given by

−
ik2

0L

2q_
u_ (z0)2F (𝜔). (8.54)

The dimensionless relative coupling strength is therefore

Z_ = u_ (z0)2
k0L
2q_

= g_ (z0 , z0)k0L, (8.55)

and we can interpret this as the ratio of the guided mode cross-section to the free-
space cross-section.

To transform (8.52) into (8.27) , we first eliminate the exponential from the
integrand by defining

𝛽 (x , 𝜔) = e−iq_ xB̂_ (x , 𝜔). (8.56)

Substituting into (8.52) and taking a spatial derivative gives

𝜕x 𝛽 (x , 𝜔) = − ik0Z_
2

F (𝜔) 𝛽 (x , 𝜔). (8.57)

This then has the solution

𝛽 (x , 𝜔) = exp
(︃
− ik0xZ

2
F (𝜔)

)︃
𝛽 (0, 𝜔). (8.58)

Adding back the phase from (8.56) gives

B̂_ (x , 𝜔) = exp
(︃
iq_ x −

ik0xZ
2

F (𝜔)
)︃
B̂_ (x , 𝜔). (8.59)

This can be solved via Kagan’s method, to obtain

B_ (x , t) = Bin
Γin

eiq_ x
(︃
𝛿 (t) − e−𝛾t/2𝛾b_

J1 (2
√
b_ 𝛾t)√

b_ 𝛾t

)︃
, (8.60)
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where now the guided mode ‘effective resonant length’ is given by

b_ =
𝜌N𝜎radxZ_ fLM

4
. (8.61)

We can see the primary differences are the scaling of the effective resonant
length with the mode factor Z_ , the guided mode envelope, and the absence of
retardation effects. Indeed, the incredibly small dispersion of the resonant wave-
vector over the nuclear bandwidth implies that that guided modes have a propaga-
tion speed enormously larger than c, on the order of 106 times faster! However, we
bear in mind that this is a group velocity, and as such is only an apparent velocity,
much like a shadow from a moving light source can be observed to have arbitrarily
large speeds when projected sufficiently far from the source. If one considers the
full frequency response of the problem, outside the resonant bandwidth, Kramers-
Kronig consistency enforces causality.

We are therefore to interpret this incredibly large group velocity as reflecting the
large mismatch in bandwidth between the waveguide and the nuclei: the waveguide
is broad-band, and has a dispersion on far larger frequency scales, and therefore
emission into the guided mode equilibrates much faster than the decay of the nu-
clear coherence. As such, the time delay between the emission and absorption of
radiation from nuclei placed at different x coordinates has a negligible effect on the
steady state behaviour of the system, which is reflected as a group velocity much
larger than c.

8.2.4 Multiple modes

For multiple resonant modes, we find

B_ (x , 𝜔) = −iF (𝜔)
k2
0L

2p_
u_ (z0)

∑︁
_ ′∈Λ

u_ ′ (z0)
∫ x

0
dx′ eiq_ (x−x

′ )B_ ′ (x′ , 𝜔) , (8.62)

whereΛ is the set of modes. Taking a spatial derivative and multiplying by the mode
function gives

u_ (z0)𝜕xB_ (x , 𝜔) = i
∑︁
_ ′∈Λ

K__ ′ (𝜔)u_ ′ (z0)B_ ′ (x , 𝜔) , (8.63)

where

K__ ′ (𝜔) = Q__ ′ −M__ ′ (𝜔) , (8.64)

Q__ ′ = q_ 𝛿__ ′ (8.65)

M__ ′ (𝜔) = Z_
k0
2
F (𝜔). (8.66)

Here, we have split the coupling matrix into guided mode electronic partQ, and nu-
clear partM . We have neglected the effect of dispersion as its magnitude is absurdly
low over the resonant bandwidth of the nuclei.

For convenience, we will introduce bra-ket notation for the mode functions.
Specifically, we can write

|B(x , z0 , 𝜔)⟩ =
∑︁
_ ∈Λ

B_ (x , z0 , 𝜔) |_ ⟩ . (8.67)
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In this notation, one can see that

B_ (x , z0 , 𝜔) = ⟨_ |B(x , z0 , 𝜔)⟩ , (8.68)

while the total field is given by

B(x , z0 , 𝜔) = ⟨+|B(x , z0 , 𝜔)⟩ , (8.69)

where NΛ is the number of modes, and

|+⟩ =
∑︁
_ ∈Λ
|_ ⟩ . (8.70)

Using this notation, is clear to see that M is a rank one matrix,

M (𝜔) = k0
2
F (𝜔) |Z ⟩⟨+| (8.71)

where
|Z ⟩ =

∑︁
_ ∈Λ

Z_ |_ ⟩ . (8.72)

As such, the only non-trivial right eigenvector is |Z ⟩ itself, with eigenvalue

k0
2
F (𝜔)

∑︁
_ ∈Λ

Z_ . (8.73)

The remaining eigenvectors are trivial (i.e. zero eigenvalue), and span the kernel
(i.e. right null space) ofM (𝜔). As such, their choice of basis is completely arbitrary,
and can be obtained using the Gram-Schmidt process.

The left eigenvectors are similarly given by ⟨+| with the same eigenvalue as |Z ⟩,
and the remaining eigenvectors spanning the co-kernel (i.e. left null space).

8.2.5 Strong coupling regime

Let us consider a regime where |Q | ≪ |M |, such that we can approximate it as a
small perturbation. This is the ‘strong coupling’ regime, i.e. the nuclear scattering
is much stronger than the electronic scattering.

As the null vectors of M are degenerate, we must take care with our choice of
perturbation. In addition,M is not symmetric, and therefore its eigenvectors do not
form an orthonormal basis. However, for perturbation purposes, we only require
that the eigenvectors of our initial matrix are orthonormal, and we are free to have
a non-symmetric perturbation. The null space of M has an orthonormal basis, and
is also orthogonal to |S⟩⟨S |, where

|S⟩ = 1
√
NΛ

|+⟩ , (8.74)

is the normalized symmetric state, with NΛ the number of modes. Therefore,

{|S⟩} ∪ ker(M) , (8.75)

where ker(M) denotes the null space of M , is an orthonormal basis.
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To handle the degeneracy, as well as the non-symmetric nature of M , we will
use the diagonal of M ,Q with respect to the symmetric basis as our initial matrix.
Defining the projectors

Pl = |l⟩⟨l | , (8.76)

PS = |S⟩⟨S | , (8.77)

PS +
∑︁

l∈ker(M )
|l⟩⟨l | = 𝟙, (8.78)

We first decompose M according to

M = PSMPS +VQ , (8.79)

where we note that as |l⟩ is a null vector,

PlMPl = 0. (8.80)

Q is decomposed as,

Q = Qker(M ) +QS +VQ , (8.81)

Qker(M ) =
∑︁
l

PlQPl , (8.82)

QS = PSQPS . (8.83)

Our initial matrix is then explicitly given by

H = Qker(M ) +QS − PSMPS (8.84)

with the perturbation given by

V =VQ −VM . (8.85)

At this stage we note that by construction, H is symmetric and non-degenerate,
and therefore its eigenvectors are orthonormal. As such, we can use ordinary per-
turbation theory, even though the perturbationV is not symmetric.

Using 𝜖 as a perturbation parameter, the problem we wish to solve is

(H + 𝜖V ) |S⟩ = kS |S⟩ , (8.86)

(H + 𝜖V ) |l⟩ = kl |l⟩ , (8.87)

kS =
∑︁
n

𝜖 nk (n)S , (8.88)

kl =
∑︁
n

𝜖 nk (n)l , (8.89)

|S⟩ =
∑︁
n

𝜖 n
|︁|︁|︁S (n) ⟩︂ , (8.90)

|l⟩ =
∑︁
n

𝜖 n
|︁|︁|︁l (n) ⟩︂ . (8.91)

To zeroth order, the eigenvectors of the full interaction matrix K will there-
fore simply be the eigenvalues of H , and by construction the eigenvalues of the left
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eigenvalues of M . In particular, |S⟩ will be an eigenvector, and the corresponding
mode has the solution

BS (x , z, 𝜔) = ⟨1|U |B(x , z, 𝜔)⟩ = ⟨1|U |S⟩ eik
(0)
S (𝜔)xBS (0, z, 𝜔) , (8.92)

where explicitly we have

k (0)S (𝜔) = −
k0
2
bZF (𝜔) + q (0)S , (8.93)

bZ =
∑︁
_

Z_ , (8.94)

q (0)S = ⟨S |Q |S⟩ = 1
NΛ

∑︁
_ ∈Λ

q_ , (8.95)

We can see that this state is ‘opaque’: it has a dynamical beat, with an enhanced
effective resonant length that is the sum of each individual modes resonant length.
The electronic contribution is simply the mean of each mode’s wave-vector and
refractive index.

On the other hand, the remaining modes are left null vectors of M (𝜔),

⟨l |M (𝜔) = 0, (8.96)

and therefore have the solution

Bl (x , z, 𝜔) = ⟨l |U |B(x , z, 𝜔)⟩ = eik
(0)
l (𝜔)xBl (0, z, 𝜔) , (8.97)

k (0)l (𝜔) = q
(0)
l , (8.98)

q (0)l = ⟨l |Q |l⟩ , (8.99)

n (0)l = ⟨l |N|l⟩ . (8.100)

We can see that to zeroth order, the null vectors are ‘transparent’: they do not in-
teract with the nuclei at all, and therefore propagate only with their corresponding
electronic contributions.

We can then in principle continue this process for higher order corrections, but
this is less qualitatively useful due to the frequency dependence of the perturbation,
and as such we will stop here, and instead proceed to explicitly analyse the solution
for a wave-guide with two-modes as a case study.
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8.3 Super-radiance and sub-radiance for two mode cou-
pling

In this section, we consider a two mode waveguide, and a spatially patterned reso-
nant layer. Specifically, let us assume that the nuclei within the resonant layer are
placed in micro-strips of width w, located at coordinates (xn , z0), where z0 is the
overall resonant layer z coordinate, and xn is the location of the nth micro-strip
centre along the x axis. For strips that are sufficiently narrow compared to the gra-
dient of the envelopes of the guided modes, the nuclei in each strip will experience
a uniform envelope, and we can then take the number density of resonant nuclei to
be

𝜌(r⃗) = 𝜌NwL𝛿 (z − z0)
∑︁
n

𝛿 (x − xn). (8.101)

The scattered response in mode _ from the n micro-strip is given by

B (n)sc ,_ (x , 𝜔) = −i k0w
2
F (𝜔)Z_Θ(x − xn)eiq_ (x−xn )

×
(︂
B (n)sc ,1 (xn , 𝜔) + B (n)sc ,2 (xn , 𝜔) + B (n−1) (xn , 𝜔)

)︂
(8.102)

where B (n−1) is the total field including the scattering of all previous micro-strips,

B (n−1) (x , 𝜔) =Bin ,1 (0, 𝜔)eiq1x + Bin ,2 (0, 𝜔)eiq2x (8.103)

+
n∑︁
m=1

(︂
B (n−m)sc ,1 (x , 𝜔) + B (n−m)sc ,2 (x , 𝜔)

)︂
,

B (0) (x , 𝜔) =Bin (x , 𝜔) , (8.104)

with Bin the input field. For convenience, we have dropped the explicit notation of
the layer z coordinate, z0. We can see the total fields obey the recurrence relation

B (n) (x , 𝜔) = B (n−1) (x , 𝜔) + B (n)sc (x , 𝜔) , (8.105)

B (n)sc (x , 𝜔) = B (n)sc ,1 (x , 𝜔) + B (n)sc ,2 (x , 𝜔). (8.106)

Equation (8.102) can be solved by evaluating at the position of the nth microstrip,

B (n)sc ,1 (xn , 𝜔) = −Z1 f (𝜔) (B (n)sc ,1 (xn , 𝜔) + B (n)sc ,2 (xn , 𝜔) + B (n−1) (xn , 𝜔)) , (8.107)

B (n)sc ,2 (xn , 𝜔) = −Z2 f (𝜔) (B (n)sc ,1 (xn , 𝜔) + B (n)sc ,2 (xn , 𝜔) + B (n−1) (xn , 𝜔)) , (8.108)

f (𝜔) = ik0wF (𝜔)
2

. (8.109)

We thus have the recursive solution for xn ≤ x ≤ xn+1,

B (n)sc ,1 (xn , 𝜔) = − Z1 f (𝜔)
1 + (Z1 + Z2) f (𝜔)

B (n−1) (xn , 𝜔) , (8.110)

B (n)sc ,2 (x , 𝜔) = − Z2 f (𝜔)
1 + (Z1 + Z2) f (𝜔)

B (n−1) (xn , 𝜔) , (8.111)

B (n)sc (x , 𝜔) = −(Z1eiq1 (x−xn ) + Z2eiq2 (x−xn ) )
f (𝜔)

1 + (Z1 + Z2) f (𝜔)
B (n−1) (xn , 𝜔) ,

(8.112)

B (n) (x , 𝜔) = B (n−1) (x , 𝜔) + B (n)sc (x , 𝜔). (8.113)
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Let us now turn our attention to the envelope of the scattered field,

A(x) = Z1eiq1x + Z2eiq2x , (8.114)

We decompose the wave-vectors into mean and difference, as well as real and imag-
inary parts, and the resonant lengths into modulus and phase,

q1 = q̄ + 𝛿q + i ^̄ + i𝛿^ , (8.115)

q2 = q̄ − 𝛿q + i ^̄ − i𝛿^ , (8.116)

q̄ =
1
2

Re(q1 + q2) , (8.117)

^̄ =
1
2

Im(q1 + q2) , (8.118)

𝛿q =
1
2

Re(q1 − q2) , (8.119)

𝛿^ =
1
2

Im(q1 − q2) , (8.120)

Z1 = |Z1 |ei𝜙1 = |Z1 |ei ( �̄�+𝛿𝜙) , (8.121)

Z2 = |Z2 |ei𝜙2 = |Z2 |ei ( �̄�−𝛿𝜙) , (8.122)

�̄� =
1
2
(𝜙1 + 𝜙2) , (8.123)

𝛿𝜙 =
1
2
(𝜙1 − 𝜙2). (8.124)

For an ideal waveguide, Z1 , Z2 are purely real. However, in the presence of loss,
they have a small imaginary part and thus 𝜙1 , 𝜙2 ≠ 0, but are small.

The common phase can then be factored out,

Ā(x) = A(x)e−i (q̄+i ^̄ )x−i �̄� = |Z1 |ei [ (𝛿q+i𝛿^ )x+𝛿𝜙] + |Z2 |e−i [ (𝛿q+i𝛿^ )x+𝛿𝜙] . (8.125)

The modulus of this envelope is then given by

|Ā(x) |2 = |Z1 |2e2𝛿^x + |Z2 |2e−2𝛿^x + 2|Z1 | |Z2 |Re(ei [ (𝛿q+i𝛿^ )x+i𝛿𝜙]) (8.126)

= |Z1 |2e2𝛿^x + |Z2 |2e−2𝛿^x + 2|Z1 | |Z2 | cos(𝛿qx + 𝛿𝜙) cosh(𝛿^x).

In practice, as we shall see in the following section, the imaginary parts of q1, q2 are
very close. We will therefore assume 𝛿^ ≈ 0, valid for sufficiently short distances.
For distances long enough for the mismatch in attenuation to be an issue, the overall
attenuation will be strong regardless, so in practice the effect is negligible.

Thus, for negligible attenuation mismatch, (8.126) reaches an extremum for
positions

𝛿qx + 𝛿𝜙 = 𝜋n n ∈ ℤ. (8.127)

Consider a strip placed at x0 = 0. Let the strips ahead of it be placed at locations

xn =
𝜋n − 𝛿𝜙

𝛿q
, n > 0. (8.128)

The unattenuated envelope reaches its maximum amplitude of

|Ā(xn) |2 = ( |Z1 | + |Z2 |)2. (8.129)
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However, consider now the scattered field from x1. The path difference is then given
by

xn − x1 =
𝜋 (n − 1)

𝛿q
, (8.130)

which is off target with the anti-nodes of the scattered field from x1 by a distance
of 𝛿𝜙/𝛿q. Therefore, it is impossible to place all the micro-strips to be completely
constructive with each other unless 𝛿𝜙 = 0. In practice, as we shall see, for realistic
waveguides this effect is small, and over the attenuation length of the cavity modes
we can consider all micro-strips to be perfectly constructive.

Let us turn our attention now to destructive interference. This occurs when the
beat term is zero,

𝛿qx + 𝛿𝜙 = 𝜋 (n + 1
2
) n ∈ ℤ. (8.131)

Thus, the scattered field from a strip at x = 0 is completely out of phase with strips
placed at locations

xn =
𝜋 (n + 1

2 ) − 𝛿𝜙

𝛿q
, n > 0. (8.132)

At these locations, the unattenuated scattered amplitude reaches its minimum value
of

|Ā(xn) |2 = ( |Z1 | − |Z2 |)2. (8.133)

As we shall see, it is possible in practice to achieve |Z1 | , |Z2 | very close to each other,
and thus achieve a very high level of destructive interference. However, note it is
not possible to get total destructive interference at all positions in a periodic array:
consider three micro-strips placed 𝜋/2𝛿q apart. The second strip is transparent
to the first, due to the fact that the scattered field of the first strip is completely
destructively interfered. The third strip is transparent to the second. However, the
third strip is located 𝜋/𝛿q from the first, and thus the first strips field is maximal!
Nevertheless, this demonstrates an intriguing subradiant phenomenon: a period
array of micro-strips at 𝜋/2𝛿q spacing can be divided into two, non-interacting
ensembles!

8.3.1 Evaluating the response of periodic arrays

We will now demonstrate how the scattered response of a periodic array can be
evaluated in the ideal scenario, Z1 = Z2 = Z , (which implies 𝛿𝜙 = 0) and 𝛿^ = 0.

The common ei (q̄+i ^̄ )x phase is eliminated by defining

𝛽 i (x , 𝜔) = e−i (q̄+i ^̄ )xBi (x , 𝜔) , (8.134)

where Bi refers to any of the fields, total, scattered, input, etc. Equations (8.110) ,
(8.111) , (8.112) , (8.113) then read

𝛽
(n)
sc ,1 (x , 𝜔) = − Z f (𝜔)e

i𝛿q (x−xn )

1 + 2Z f (𝜔) 𝛽 (n−1) (xn , 𝜔) , (8.135)

𝛽
(n)
sc ,2 (x , 𝜔) = − Z f (𝜔)e

−i𝛿q (x−xn )

1 + 2Z f (𝜔) 𝛽 (n−1) (xn , 𝜔) , (8.136)

𝛽
(n)
sc (x , 𝜔) = −2Z cos(𝛿q(x − xn))

1 + 2Z f (𝜔) 𝛽 (n−1) (xn , 𝜔) , (8.137)

𝛽 (n) (x , 𝜔) = 𝛽 (n−1) (x , 𝜔) − 2Z cos(𝛿q(x − xn))
1 + 2Z f (𝜔) 𝛽 (n−1) (xn , 𝜔). (8.138)
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In particular, we have

𝛽 (n) (xn+1 , 𝜔) = 𝛽 (n−1) (xn+1 , 𝜔) − Z cos(2𝛿q𝛿x)
1 + 2Z f (𝜔) 𝛽 (n−1) (xn , 𝜔) , (8.139)

for arrays spaced at periodic intervals of width 𝛿x.

Constructive interference

For constructive interference, we place the micro-strips at locations

xn =
𝜋n
𝛿q

. (8.140)

Let us define b to be the values of the total field sat the periodic locations,

b (m) (𝜔) = 𝛽 (m) (xm , 𝜔). (8.141)

We note that since
cos(𝛿q𝛿x) = cos(𝜋) = −1, (8.142)

the periodically evaluated total fields obey the recurrence relation

b (m) (𝜔) =
(︃
cos(𝛿q𝛿x) − 2Z cos(𝛿q𝛿x)

1 + 2Z f (𝜔)

)︃
b (m−1) (𝜔) (8.143)

=
−1

1 + 2Z f (𝜔) b
(m−1) (𝜔)

b (0) (𝜔) = 𝛽 (0, 𝜔). (8.144)

This then has the solution

b (m) (𝜔) = (−1)m
(1 + 2Z f (𝜔))m 𝛽 in (0, 𝜔). (8.145)

The mth scattered field, evaluated at arbitrary positions, is therefore given by

𝛽
(m)
sc (x , 𝜔) = −2Z cos(𝛿qx) (−1)m

(1 + 2Z f (𝜔))mΘ(x − xm) (8.146)

Thus, the total field after scattering from N strips in total is given by

B(x , 𝜔) = Bin (x , 𝜔) − ei (q̄+i ^̄ )x2Z cos(𝛿qx) f (𝜔)
N∑︁
m=1

(−1)m
(1 + 2Z f (𝜔))mBin (0, 𝜔).

(8.147)
In particular, if we set the waveguide outlet to an anti-node, the output field is given
by

Bout (xout , 𝜔) = ei (q̄+i ^̄ )xout
(−1)N

(1 + 2Z f (𝜔))N
Bin (0, 𝜔). (8.148)

This lets us directly define the transmission coefficient,

T (𝜔) = Bout (xout , 𝜔)
Bin (0, 𝜔) =T0

1
(1 + 2Z f (𝜔))N

, (8.149)



108 CHAPTER 8. FORWARD SCATTERING

where T0 = (−1)N ei (q̄+i ^̄ )xout is the bare waveguide transmittance. We can see that
the total nuclear transmittance is the product of the transmittances of the individual
micro-strips,

T (𝜔) =T0

N∏︂
i=1

Tnuc (𝜔) , (8.150)

Tnuc =
1

1 + 2Z f (𝜔) . (8.151)

Let us now consider explicitly the response of a two-level system,

f (𝜔) = i𝛾/4
𝜔 + i𝛾/2k0w. (8.152)

The nuclear transmittance is then given by

Tnuc =
1

1 + 2Z f (𝜔) =
𝜔 + i𝛾/2

𝜔 + i𝛾/2 + iZ 𝛾k0w/2
. (8.153)

Assume for the time being that Z is purely real. This would be the case for propaga-
tion in a homogeneous lossless medium. This function then reaches its minimum
when 𝜔 = 0,

Tnuc →
1

1 + Z k0w/2
≤ 1. (8.154)

Therefore, we can see that this corresponds to the attenuation of the incident field by
the resonant absorption of a single microstrip, which is enhanced by the strip width
w due to super-radiance. Due to the waveguide attenuation, not all the attenuated
input field is converted to nuclear excitation, and we will now carefully consider the
efficiency of nuclear absorption.

The first strip absorbs 1−Tnuc (𝜔) of the beam. The transmission to the second
strip isTnuc (𝜔)T𝛿 , where the waveguide transmission between the strips is given by

T𝛿 = −ei (q̄+i ^̄ )𝛿x , 𝛿x =
𝜋

𝛿q
. (8.155)

Therefore, the second strip absorbs Tnuc (𝜔)T𝛿 (1 − Tnuc (𝜔)). In general, the nth
strip absorbs a factor of

(Tnuc (𝜔)T𝛿)n−1 (1 −Tnuc (𝜔)). (8.156)

The total absorption is then

(1 −Tnuc (𝜔))
N∑︁
n=1

(Tnuc (𝜔)T𝛿)n−1 = (1 −Tnuc (𝜔))
(Tnuc (𝜔)T𝛿)N − 1
Tnuc (𝜔)T𝛿 − 1

. (8.157)

As |Tnuc (𝜔)T𝛿 | < 1, this reaches a limit of

1 −Tnuc (𝜔)
1 −Tnuc (𝜔)T𝛿

, (8.158)

as N → ∞, corresponding to the maximal absorption efficiency. In particular, if
T𝛿 → 1, one reaches perfect absorption.
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As 𝜔 →∞, the nuclear transmittances tend to 1. Therefore, as with nuclear for-
ward scattering, the time response will consist of a prompt response, corresponding
to the bare waveguide transmittance, and a delayed response from the nuclear ex-
citation. The form of the delayed response in Fourier space is given by

R(𝜔) = (𝜔 + i𝛾/2)N

(𝜔 + i𝛾/2 + J + iΓ)N
− 1, (8.159)

where

J + iΓ = i
Z k0w𝛾

2
. (8.160)

Let us define a = 𝜔 + i𝛾/2 + J + iΓ. We then have

R(a) = (a − a0)n − an

an
=

n−1∑︁
m=0

(︃
n
m

)︃ (︂
− a0

a

)︂n−m
, (8.161)

where a0 = J + iΓ. The time domain form is then given by

R(t) = ei ( J+i𝛾/2+iΓ)t
n−1∑︁
m=0

(︃
n
m

)︃
(−a0)n−m

∫ i𝛾/2+iΓ+∞

i𝛾/2+iΓ−∞

da
2𝜋
e−iat

1
an−m

. (8.162)

Since the contour lies above all poles, the response is non-zero only for t > 0.
Therefore, closing the contour in the lower half plane for t > 0, and noting that∫ i𝛾/2+iΓ+∞

i𝛾/2+iΓ−∞

da
2𝜋
e−iat

1
a l

= (−i)l tl−1

(l − 1)!Θ(t) , (8.163)

we have

R(t) = ia0ei ( J+i𝛾/2+iΓ)t
n−1∑︁
m=0

(︃
n
m

)︃
1

(n − m − 1)! (ia0t)n−m−1Θ(t) (8.164)

= ia0ei ( J+i𝛾/2+iΓ)t
n−1∑︁
m=0

(︃
n

n − m − 1

)︃
1
m!
(ia0t)m .

In particular, we recognize the sum as a generalized Laguerre polynomial,

n−1∑︁
m=0

(︃
n

n − m − 1

)︃
1
m!
(ia0t)m = L(1)n−1 (−ia0t) (8.165)

Therefore, the delayed response has the compact expression

R(t) = ia0ei ( J+i𝛾/2+iΓ)tL
(1)
n−1 (−ia0t). (8.166)

As n gets large, the leading term in L(1)n−1 (x) approaches(︃
n

n − m − 1

)︃
1
m!
∼ nm n

m!(m + 1)! , n →∞. (8.167)

We then have asymptotically

n
n−1∑︁
m=0

(ia0nt)m
m!(m + 1)! ∼ n

√
n J1

(︁
2
√
−ina0t

)︁
√
−ina0t

, n →∞. (8.168)
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In particular, when the Lamb shift is vanishing, J = 0, we obtain a0 = iΓ, and thus

L(1)n−1 (Γt) ∼ n
J1

(︁
2
√
nΓa0t

)︁
√
nΓt

. (8.169)

The delayed response is then given by

R(t) ∼ −nΓe−(𝛾/2+Γ)t
J1

(︂
2
√
nΓt

)︂
√
nΓt

. (8.170)

Combining with the prompt response, we obtain

𝛿 (t) − nΓe−(𝛾/2+Γ)t
J1

(︂
2
√
nΓt

)︂
√
nΓt

, (8.171)

which we can see is identical to the forward scattering of a bulk layer, with the ad-
dition of an overall collective broadening.

Now that we have explored the forward scattering of a constructively interfering
array of micro-strips, let us turn our attention to the case of destructive interference.

Destructive interference

For destructive interference, the condition for the inter-strip spacing is

𝛿x =
𝜋

2𝛿q
. (8.172)

Let us consider two strips placed 𝛿x apart. The total field after scattering from the
first strip is given by

𝛽 (1) (x , 𝜔) = (1 − 2Z f (𝜔) cos(𝛿qx)
1 + 2Z f (𝜔) ) 𝛽 in (x , 𝜔). (8.173)

Evaluating this at the position of the second strip, we obtain

𝛽 (1) (𝛿x , 𝜔) = 𝛽 in (𝛿x , 𝜔) , (8.174)

due to destructive interference. Therefore, the second strip does not experience
the scattered radiation of the first! On the other hand, if we place a third strip at
x = 2𝛿x, the scattered field of the second is vanishing, but we obtain

𝛽 (1) (2𝛿x , 𝜔) =
(︃
−1 + 2Z f (𝜔)

1 + 2Z f (𝜔)

)︃
, (8.175)

due to the fact that 2𝛿x𝛿q = 𝜋. Therefore, we can see that in general, if we have
periodic array spaced 𝛿x apart, we can divide them into even and odd positions,
which each scatter independently, and constructively with each other. The even
scattered field is zero whenever the odd is maximal, and vice versa, therefore the
final observed scattered field is that of only half the strips, with the corresponding
resonant length that of only half the total number! Thus, this geometry is sub-
radiant.
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8.3.2 Numerical example

As a numerical study, we will consider a waveguide with Molybdenum cladding
layers, a 1 nm iron layer, and 15.8 nm of B4C filler on either side of the resonant
layer. This wave-guide illustrates all the features developed in this chapter, and thus
we will use it as our illustrative example. The numerically obtained parameters for
this waveguide are summarized in Table 8.1.

Parameter Value

𝛿q 152.12 mm−1

𝜋/𝛿q 20.65µm
𝛿^ −1.88 mm−1

Qbeat = |𝛿q/𝛿^ | 80.78
Qatten = |𝛿q/^̄ | 45.91
Q̄ =

√︁
QbeatQatten 60.90

q̄ − k0 −0.3832µm−1

^̄ 3.31 mm−1

b1 2.7311 × 10−4 + 2.6046 × 10−6i
b3 2.7425 × 10−4 − 4.3168 × 10−6i
B1 (0, 𝜔)/Bin 5.4906 − 1.9194 × 10−3i
B3 (0, 𝜔)/Bin 0.614 61 − 1.8194 × 10−2i
𝛿𝜙 0.0252 rad
|b1/b3 | 0.99576
( J + iΓ)/𝛾 6.4056 × 10−4 + 0.204 77i

Table 8.1: Summary of two-mode coupling parameters, for the dominant modes
_ = 1, 3 in a molybdenum waveguide. All quantities are evaluated at reso-
nant layer centre. Waveguide structure is Mo (∞)/ B4C (15.8 nm)/ 57Fe (1 nm)/
B4C (15.8 nm)/ Mo (∞)

First, we illustrate the guided and leaky mode profiles in Figures 8.3 and 8.4,
as a function of layer depth. This waveguide supports three guided modes, but
only the even modes, i.e. those that are symmetric upon reflections about z0, have
appreciable magnitude when evaluated at the nuclear layer. The leaky modes have
similar magnitudes to the guided modes, however their attenuation is far larger,
which can be observed in Figure 8.5. This figure illustrates the location of the guided
modes, leaky modes and branch cut in the complex q plane. Due to the larger
attenuation of the leaky modes, their corresponding residues are suppressed by a
proportional factor. This can be clearly seen in Figure 8.6, which shows the Fourier
transformed Green’s function along the real q axis. The dominant contribution by
far is that of the two even guided modes, _ = 1, 3, and the rest can be treated as a
constant background, renormalizing the single particle decay rate.

To evaluate the expansion coefficients for the resonant fields, we assume a broad-
band input, and thus take the incident field on the front plane to be constant. We
therefore have

B_ (0, 𝜔) = Bin
∫ ∞

−∞
dz u_ (z). (8.176)

The resultant input field at the resonant layer is illustrated in Figure 8.7. Clearly
visible is the beat pattern resulting from the interference of the two modes. The



112 CHAPTER 8. FORWARD SCATTERING

−10 0 10 20 30 40

z (nm)

0.00

0.01

0.02

0.03

0.04
|u
λ
(z

)|2
(n

m
−

1
)

Mo (∞)/B4C (15.8 nm)/Fe (1.0 nm)/B4C (15.8 nm)/Mo (∞)

λ=1

λ=2

λ=3

Figure 8.3: Normalized amplitudes of the guided modes of a molybdenum waveg-
uide. Only the first two even modes, _ = 1, 3 couple to the thin nuclear layer, giving
us a two mode geometry. The layer widths have been optimized for the two modes
to couple almost exactly equally to the resonant layer, giving a strong interference
beat in their collective radiation field.

first guided mode has a larger relative amplitude due to the fact that it oscillates less
within the waveguide core, and as such has a larger component in the uniform input
profile.

From Table 8.1, we can see that the wavelength of the interference beat between
the two guided modes is approximately 20µm. On the other hand, the attenuation
lengths are much smaller, on the millimetre scale. This motivates the definition of
two Q factors for the system. The first is the ‘beat Q factor’,

Qbeat =
𝛿q
𝛿^

. (8.177)

This is to be qualitatively interpreted as the number of beats that occur before the
attenuation mismatch causes visibility to diminish significantly. For this waveguide,
it has a value of approximately 81. The second is the ‘attenuation Q factor’,

Qatten =
𝛿q
^̄

, (8.178)

which measures the number of beats that occur before overall attenuation dissipates
the field. For this waveguide, it is lower thanQbeat , with a value of approximately 46.
We take the overall Q factor for the collective mode to be the geometric mean of
these two Q factors, as both the overall attenuation and attenuation mismatch should
be minimized to optimize the cavity for long range sustained collective interference.
For this waveguide, the geometric mean gives an overall Q factor of approximately
61. The effects of both attenuation mismatch and overall attenuation is clearly il-
lustrated in Figure 8.8, which illustrates how the attenuation mismatch causes the
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Figure 8.4: Normalized amplitudes of the first few leaky modes of a molybdenum
waveguide, which correspond to resonances of the radiative modes. Superimposed,
and dashed, is the amplitude of the first guided mode, _ = 1. The exponential
divergence of the leaky modes is clearly visible, demonstrating their nature as an
asymptotic expansion for the near field. Although the leaky modes have amplitudes
of similar magnitude to the guided modes at the resonant layer (red shading), Fig-
ures 8.5 and 8.6 demonstrate how the overall coupling strength is suppressed by
their large attenuation.

relative strengths of the constituent fields to diverge throughout the waveguide, and
thus reduces the visibility of the interference beat.

To evaluate the effect of the phase mismatch between the guided modes, which
evaluates to approximately 𝛿𝜙 = 0.0252 rad, we consider the difference between
perfect constructive interference, and one that is slightly off target by 𝛿𝜙. This gives

1 − cos(0.0252) ≈ 0.03%. (8.179)

As such, this is negligible, especially compared with the effects of attenuation mis-
match.

Let us now compare the constructive and destructive scattering ensembles, for
an equivalent total combined strip thickness, Figure 8.9. One can clearly see that the
constructive ensemble reaches a larger maximum, while the destructive ensemble
has a greatly suppressed interference beat due to the out of phase emission of the
two sub-ensembles. However, due to the attenuation mismatch, the effect is not
perfect, and the contrast in peak field strength between the two ensembles is not as
high as the ideal case.

Due to the narrow strip width, and the relatively large wavelength of the inter-
ference beat, the field envelope is very uniform over the strip’s longitudinal extent.
For a 1µm strip, the change in amplitude is approximately

1 − cos(1/20) ≈ 0.12%. (8.180)
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Figure 8.5: Relative mode wave-numbers and radiative mode branch cut for molyb-
denum waveguide. One can clearly see that leaky modes and guided modes are sep-
arated by the branch cut. The leaky modes are significantly attenuated compared to
the guided modes, and as such are only relevant at very close range, on the order of
1µm.

Thus, we can consider the strip to follow Dicke model dynamics. This can easily be
seen by the response of a single strip,

− 2Z f (𝜔)
1 + 2Z f (𝜔) , (8.181)

which is identical in form to the collective response of a grazing incidence Dicke
mode from Section 7.2. Compared to a bulk layer scattering, this results in an
additional overall collective Lamb shift and broadening, however the effect is small,
approximately 0.2𝛾 for the broadening, and negligible Lamb shift.

Let us now consider the regime of minimized attenuation mismatch. If this
could be achieved, the constructively interfering micro-strips would act as very
strong absorbers of resonant X-rays, Figure 8.10. This figure illustrates the maxi-
mal absorption efficiency as a function of frequency for vanishing attenuation mis-
match, reaching a peak efficiency of approximately 75% for a 1µm strip. However,
in practice, the effect of attenuation mismatch reduces this to the order of 60% or
less. This can be seen in Figure 8.11, which shows the effect of micro-strip width on
the peak saturation reached by the scattered field. Reducing the strip width reduces
the ensemble size, and hence the Dicke super-radiance, resulting in a smaller cross-
section. As a result, narrow strips reach a smaller peak saturation before attenuation
becomes significant. There is a trade-off to be made however, between the strength
of the Dicke super-radiance and the uniformity of the field across the strips longi-
tudinal extent, with wider strips experienced a less uniform field envelope. As such,
one cannot increase the strip size much beyond
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Figure 8.6: Fourier transformed Green’s function of a molybdenum clad waveg-
uide, evaluated at resonant layer position. One can clearly see that only two modes
couple with any appreciable amplitude to the nuclei, with the leaky modes heavily
suppressed by attenuation.

Qualitatively, the absorption spectra resemble those of nuclear forward scatter-
ing [68], as we saw in equations (8.166) , (8.171) , the nuclear forward scattering
spectrum is reached as the limit of large strip number. This is illustrated in Fig-
ure 8.12, which compares the Laguerre polynomial response of a finite number of
strips, to the largeN Bessel function limit. One can see that for larger strip numbers
the Bessel function limit approximates the Laguerre response for longer times.

Finally, let us examine the two-dimensional field profiles of the scattered field,
Figures 8.13 and 8.14. One can see that the scattered fields in both the constructive
and destructive cases reach similar peak magnitudes, however for the destructive
field the field is redistributed slightly outside the layer. Of interest however is the
phase shift of the interference beats undergone by the constructive field as it crosses
an anti-node of the third guided mode, which is not the case with the destructive
field. This effect could be interesting to explore when considering multiple resonant
layers, with an interplay between the phase mismatch of two layers placed on either
side of the third guided mode anti-nodes.
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Figure 8.7: Amplitudes of input fields, evaluated at the layer depth z0, as they prop-
agate through the waveguide. Note the long attenuation lengths. The interference
between the two modes is visible as a beat pattern with a wavelength of approxi-
mately 20µm. Field is normalized by total field at beginning of resonant layer; as
the input fields are initially out of phase, peak values with this choice of normaliza-
tion are greater than one.



8.3. SUPER-RADIANCEANDSUB-RADIANCEFORTWOMODECOUPLING117

0 50 100 150 200

x (µm)

0.00

0.05

0.10

0.15

|B
s
c
(x
,z

0
)|/
|B
in
|

Scaled

0 50 100 150 200

x (µm)

0.00

0.05

0.10

0.15

|B
s
c
(x
,z

0
)|/
|B
in
|

Unscaled

B1 +B3

B1

B3

Mo (∞)/B4C (15.8 nm)/Fe (1.0 nm)/B4C (15.8 nm)/Mo (∞)

Figure 8.8: On-resonance scattered field for a single micro-strip, both scaled to re-
move the overall attenuation (top), and unscaled (bottom). One can observe both
the interference beat of the two participating modes. As the collective mode is the
symmetric superposition of the two participating modes, a mismatch in the attenu-
ation lengths causes the scattered field to gradually drift out of the collective mode,
clearly visible as the reduced visibility of the interference beats.
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Figure 8.9: Comparison of super-radiant (blue) and sub-radiant (orange) geome-
tries, with identical combined strip thickness. The super-radiant state reaches a
higher peak scattered intensity, but displays the pronounced beat of the collective
interference. The sub-radiant geometry displays a suppressed beat, due to the out
of phase emission of the two sub-ensembles. Shading displays strip locations for
constructive (top) and destructive (bottom) geometries.
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Figure 8.10: Ideal maximal absorption efficiency for constructively interfering
micro-strips of various widths. Increasing the strip width beyond approximately
1µm would violate the assumption of uniform illumination across a strip’s extent,
and thus we consider this as our upper bound. At 1µm, a single strip absorbs ap-
proximately 17% of resonant light. Transmission between the strips is approxi-
mately 93%. Clearly visible is the significant super-radiant broadening, presenting
an enhanced total Mössbauer cross-section.
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Figure 8.11: Effect of micro-strip width on saturation of constructively interfering
strips. Contrast of shading used to illustrate strip locations, with narrow strips (width
not illustrated) located at the edge of each shading transition. Strips are kept at same
spacing, corresponding to a single beat length. Peak saturation is quickly reached,
at about 100µm, corresponding to 5 strips. Increasing strip width increases the
collective cross-section, and thus saturation is reached closer to the incident plane,
and with larger intensity.
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Figure 8.13: Two-dimensional field profile of scattered field from constructively in-
terfering strips. Highlighted in white are the anti-nodes of the participating modes
(Figure 8.3), with the nuclear strips located at the central anti-node. The first mode
only has a single anti-node at the centre, while the other has three anti-nodes. The
scattered field undergoes a phase shift as one crosses these anti-nodes in the z di-
rection.
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Figure 8.14: Two-dimensional field profile of scattered field from destructively in-
terfering strips. Highlighted in white are the anti-nodes of the participating modes.
The scattered field does not experience a significant interference beat, and thus the
phase shift at the anti-nodes is greatly suppressed compared with Figure 8.13.
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Chapter 9

Conclusions and outlook

9.1 Green’s function formalism for Mössbauer nuclei

In Chapters 3, 4 and 6 we used the Grüner-Welsch quantization to demonstrate
that the coupling of the electromagnetic field to Mössbauer nuclei in general linear
macroscopic media obey Maxwell-Bloch equations. Specifically, the field obeys the
macroscopic Maxwell-Equations with the nuclear magnetization as a source, and
the nuclei obey the isomeric equivalent of the optical Bloch equations. Thus, we
can describe the scattered field of the nuclei via the dyadic Green’s function of the
macroscopic Maxwell’s equations for the medium, and we were able to use the well
known spectral properties of the slab waveguide Green’s function to derive analytic
expressions for the guided mode propagation.

Outlook

While we have only considered slab geometries in this work, exact expressions and
spectral expansions for the dyadic Green’s function are known for many other ex-
perimentally interesting geometries. For example, solutions for cylindrical and
spherical multi-layers are known [82], and thus one could evaluate if Mössbauer
nuclei embedded in nanowires or nano-spheres could have desirable properties.

On the other hand, for less symmetric geometries, exact solutions are not known,
and one must use numerical methods to obtain the quasi-normal modes. Radiative
boundary conditions pose a considerable challenge. However, if the geometry in-
volves entirely lossy media, attenuation allows one to consider finite volumes, and
the numerics become far more amenable. This could be useful for analysing ge-
ometries with periodic voids, to create effective optical potentials.

In addition, while we have neglected tapered waveguides in this work, Chen
et al. [56] have demonstrated that they could be used to focus the guided mode,
and thus enhance the local field, with the possibility of attaining nuclear inversion.
This work was done using the paraxial Maxwell’s equations to solve the propagation
of the field, which assumes that the envelope of the field is slowly varying in the
transverse direction. As such, this may not necessarily be a good approximation
in the limits of extreme focusing. On the other hand, any taper would have to
occur on a longitudinal length scale much larger than the wavelength of the field,
and additionally, the difference in refractive indices at X-ray wavelength are small.
Thus, it is possible that a Born series could be used to obtain its Green’s function,
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starting with the Green’s function for a slab waveguide, and treating the taper as a
perturbation.

9.2 Inhomogeneity in grazing incidence X-ray quan-
tum optics

In Chapter 7, we considered the effects of two kinds of inhomogeneity on grazing
incidence energy spectra. We first considered angular broadening, and showed that
angular instability during an experiment can result in distortion of the spectral fea-
tures in such a way that one could draw erroneous conclusions about the hyperfine
interactions in a sample.

We have demonstrated that angular divergences can lead to significant devia-
tions from single mode behaviour in grazing incidence, and the potential for erro-
neous estimates for hyperfine parameters and cavity structures when using grazing
incidence scattering as a measurement technique. This also demonstrates a trade-off
between intensity and single mode excitation: focusing the beam tighter for a larger
intensity necessarily increases the beam divergence, and thus poses a limitation on
the field strengths that can be achieved in the single mode regime.

Next, we considered the role of inhomogeneous broadening in Dicke model
super-radiance. We demonstrated that rather than acting as a frequency shift and
overall broadening, the collective Lamb shift and super-radiant decay rate act in
novel ways as a collective all to all coupling between the nuclei. This all to all cou-
pling can overcome the effects of inhomogeneous broadening due to hyperfine pa-
rameter distributions, and the limit of strong collective coupling leads to an effec-
tively single line spectrum, i.e. the collective mode dominates.

Outlook

Since commonly used beam parameters have a divergence that is to be considered
broad relative to the resonance widths of the thin film cavities, one cannot assume in
general that a single Fourier mode is excited. Future theoretical predictions should
therefore take beam divergence into account, especially when fitting to experimental
data.

The situation with inhomogeneous broadening however, is not so pessimistic.
The combination of various collective and hyperfine parameters results in a wide
range of available line-shapes, as well as a degree of control using the angle of inci-
dence.

9.3 X-ray quantum optics of Mössbauer waveguides

In Chapter 8, we developed the theory for the interaction of guided modes of a thin
film waveguide with a thin layer of Mössbauer nuclei placed within. The resulting
equations of motion were shown to be analogous to nuclear forward scattering, with
the effective resonant length being scaled by the mode amplitude at the nuclear layer
and inverse of the mode wave-vector.

We then considered the role played by coupling to multiple modes, and showed
that a thin layer of nuclei only emits to a single, symmetric combination of the
available modes.
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In a waveguide with only two available modes, we showed that as the scattered
field of the nuclei is emitted into a superposition of the two modes, the resulting
radiation pattern has an interference beat. If the nuclei are structured in micro-
strips, the positioning of the strips can be manipulated to interact with each other
constructively or destructively as desired.

Outlook

We have demonstrated that front coupling geometry provides true two-dimensional
geometric control in the quantum optics of Mössbauer nuclei. As a result, mod-
els from the visible optics community, involving the coupling of guided modes to
atoms structured in arrays, or two-dimensional arrangements, are now viable to im-
plement in the Mössbauer regime.

For example, placing micro-strips at nodes allows for one to consider neigh-
bouring pairs as effectively non-interacting, but next nearest neighbour pairs as
strongly interacting. An auxiliary layer of micro-strips could potentially be used
to reintroduce coupling between nearest neighbours via cross-layer scattering, and
thus implement asymmetric hopping models with Mössbauer nuclei. This raise the
prospect of the experimental investigation of the associated topological phenom-
ena [111–114] in a manner free from thermal noise, with minimal inhomogeneous
broadening.

The possibility of two-dimensional structures on the other hand, bring to mind
the atomic mirror array [19, 22]. In this geometry, the interference of collective
radiation in a two-dimensional sub-wavelength grid of atoms leads them to act as
a mirror to resonant light. While at first glance it would seem this is impossible
to implement with Mössbauer nuclei, due to incredibly small wavelength of the
transitions, we saw in the two mode case that it is in fact the difference in wavelengths
between guided modes that sets the length scale for the interference effects, and
thus, a similar effect might be achievable in a waveguide setting.

Finally, due to the sputter deposition process for the creation of the thin-films,
we are limited to polycrystalline layers and thus forward scattering only. On the
other hand, if monocrystalline layers could be achieved experimentally, one could
potentially match the longitudinal wavelength of a guided mode to a Bragg reso-
nance of the guided layer, which would introduce back-scattering, and thus bidirec-
tional propagation.
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Appendix A

Radiative modes

In this Appendix, we study the radiative modes, and justify neglecting them in our
equations of motion. The radiative modes correspond to the branch cut of Sec-
tion 4.2, and form a continuum. They are physically interpreted as modes which
propagate out into the capping layers, as opposed to being confined within the core
of the waveguide like the guided modes. In Figure A.1, we can see that this results
in a Fano-like profile peaked at the radiative branch cut Re(ntop)k0. Although there
is no exact general analytical solution that we know of for the Fourier inversion of
this profile, we may nevertheless seek an appropriate approximate solution.

One such method is to seek a sum of poles that would approximate Grad along
the real q axis. The resulting approximation can be Fourier inverted to give a sum of
decaying exponentials, plus a possible background contribution. The problem with
this however, is that this approximation is in general inconsistent with the analytic
continuation ofGrad into the imaginary q plane. However, asGrad has a branch cut,
which is avoided by our integration contour, we are free to chose poles which lie on
this branch cut, and not affect the analytic properties of the contour interior. This
corresponds to approximating the branch cut as a series of zeros and poles, and is
thus a rational function approximation method.

Thus, our Ansatz for the approximation is

←→
G rad (q , z0 , z0 , 𝜔) ≈ ←→𝟙 ⊥

∑︁
_ ∈Λe f f

g_
k0
· 1
q/k0 − Re(ntop) + i 𝛽_

+←→𝟙 ⊥
∑︁
l

g (l )rad
k0

(︃
q
k0

)︃ l
,

(A.1)
where Λe f f is the set indexing our effective radiative modes, 𝛽_ > 0 is the displace-
ment along the vertical branch-cut contour, and we have made a series expansion
with coefficients g (l )rad for the background, which is an entire function.

In Figure A.2, we can see the largest 4 pole contributions to this approximation,
for a waveguide with structure Mo/B4C (24 nm) /57Fe (1 nm)/ B4C (24 nm)/Mo,
with the background overlaid. The background is constant over the spatial band-
width of interest, and as such will result in a collective Lamb shift and broadening
of the propagating nuclear polariton. Specifically, if we consider contribution to the
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two-level equation of motion, (B.39) , from the flat radiative background, we obtain

i
m2

0

3ℏ
tr
{︂←→
𝟙⊥

}︂
`0 𝜌Nk0Lg

(0)
rad

∫
dx′

∫
dq
2𝜋
eiq (x−x

′ ) Π̂ge (x′ , 𝜔) (A.2)

=i fLMΓrad. (M1, Ie → Ig )
2
3
· 𝜌N
k3
0

k0Lg
(0)
rad Π̂ge (x , 𝜔) (A.3)

=(iΔcoll . − Γcoll .)Π̂ge (x , 𝜔). (A.4)

For front coupling, these are quite small. For example for the cavity in Figure A.2,
the collective broadening is approximately 0.05% of Γrad., and the Lamb shift 0.37%
of Γrad.. Since approximately 90% of the single particle line-width is due to internal
conversion, we can see this contribution is negligible.

The pole contributions themselves couple negligibly to the nuclei, having an
effective resonant length that is 3 to 4 orders of magnitude smaller than that of the
dominant two modes. Therefore, we can safely neglect the radiative modes, and
consider only the dominant guided and leaky modes.
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Figure A.1: Radiative Fourier space Green’s function evaluated at the resonant
layer, Grad (q = k0 cos \ , z0 , z0 , 𝜔) for a Molybdenum based waveguide. One
can clearly see a Fano like profile along the real q axis, concentrated around q =

Re(nMo)k0, corresponding to the branch cut contribution.
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Figure A.2: Individual poles used to approximate the branch cut contribution of
Figure A.1 (solid line), overlaid with the broad-band background (dashed line). The
background results in a collective Lamb shift of 0.37%×Γrad., and collective broad-
ening of 0.05%×Γrad.. The residue and hence effective resonant length of each pole
is 3 to 4 orders of magnitude smaller than that of the dominant guided modes.
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Appendix B

Specific forms of the
susceptibility tensor

In this Appendix, we derive specific forms of the susceptibility tensor that are re-
quired in the main body of the work.

Experimentally, thin film waveguides are formed through a sputter deposition
process. As such, the resonant layer is polycrystalline in practice, and each crystal
grain will have a random orientation and structure. Therefore, there is a probabilis-
tic distribution of hyperfine parameters throughout the sample, and we must take
this into account. Therefore, in Section B.1, we show that the susceptibility tensor
in these circumstances can be obtained by averaging over the hyperfine distribution.
We then specialize this in Section B.2 for isotropic distributions, to show that this
reduces to a sum of Lorentzians multiplied by an isotropic polarizability tensor.

Finally, in Section B.3, we consider the limit of zero hyperfine splittings, to
obtain the necessary pre-factors for the resulting single line susceptibility, as well as
for the two-level Bloch equations.

B.1 Derivation of average susceptibility tensor

Suppose the hyperfine interaction is parameterized by a parameterN-vector s⃗, with
probability distribution p( s⃗), ∫

p( s⃗) dN s = 1. (B.1)

For each parameter vector, we can write the Hamiltonians for the excited and ground
states in the form

He ( s⃗) =
∑̀︁
ℏΔ` ( s⃗)

|︁|︁`, s⃗
⟩︁⟨︁
`, s⃗

|︁|︁ , (B.2)

Hg ( s⃗) =
∑︁
j

ℏΔ j ( s⃗)
|︁|︁ j , s⃗⟩︁⟨︁ j , s⃗|︁|︁ , (B.3)

where
|︁|︁`, s⃗

⟩︁
is the `th excited eigenstate of He ( s⃗), Δ` ( s⃗) its corresponding eigen-

value, and analogous for j.
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The response tensor is then given by

𝜒+ (𝜔 , s⃗) =
m2

0

2Ig + 1

∑̀︁
, j

d⃗ ` j ( s⃗)∗ ⊗ d⃗ ` j ( s⃗)
ℏ(𝜔 − Δ` ( s⃗) + Δ j ( s⃗) − i 𝛾2 )

, (B.4)

where d⃗ ` j ( s⃗) is the dimensionless transition dipole vector.
Consider a geometry that has translational symmetry along the y axis, and a line

of inhomogeneous nuclei located at x0, z0, that extends along the y coordinate. The
response of this slice to a beam that is uniform in y is given by

Bsc (r⃗ , 𝜔) =

− `0 𝜌N

∫
dy′
←→
G mm (x , x0 , y − y′ , z, z0 , 𝜔0) · ←→𝜒 + (𝜔 , s⃗(y′)) · B⃗in (x0 , z0 , 𝜔) ,

(B.5)

where we have expressed the inhomogeneity as a spatially dependent hyperfine pa-
rameter vector. Fourier transforming the y coordinate, we have

Bsc (x , q , z, 𝜔) = −`0 𝜌N
←→
G mm (x , x0 , q , z, z0 , 𝜔0) · ←→𝜒 avg (𝜔 , q) · B⃗in (x0 , z0 , 𝜔) ,

(B.6)
where

←→
𝜒 avg (𝜔 , q) =

∫
dy′ e−iqy

′←→
𝜒 + (𝜔 , s⃗(y′)). (B.7)

Let us suppose that the bandwidth of the Fourier transformed Green’s function
is sufficiently narrow, such that eiqy is approximately constant over a single crystal
grain, and that the grains are approximately equally size. We can then take the
integral to be given by the sum∫

dy′ e−iqy
′←→
𝜒 + (𝜔 , s⃗(y′)) ≈ 𝛿y

M∑︁
i=1

←→
𝜒 + (𝜔 , s⃗i )eiqyi , (B.8)

whereM is the number of grains in the integral, s⃗i is the hyperfine parameter vector
at the ith grain, yi its location, and 𝛿y the domain size. Let us consider a coarse
graining of the hyperfine parameters: we tile the hyperfine parameter space with
N-cubes of size 𝛿sN , and approximate all parameter vectors within an N-cube as
equal to the cube centre. We can then collect all terms with the same coarse grained
parameter vector together, to get∫

dy′ e−iqy
′←→
𝜒 + (𝜔 , s⃗(y′)) ≈ 𝛿y

∑︁
n⃗

←→
𝜒 + (𝜔 , s⃗n⃗)

∑︁
in⃗

eiqyin , (B.9)

where n⃗ labels the N-cubes, and in⃗ labels the crystal grains that have approximately
the same hyperfine parameters s⃗n⃗. Since these grains are randomly distributed, the
sum over the phases will be approximately zero, unless q = 0, in which case we have∑︁

in⃗

= mn⃗ , (B.10)

where mn⃗ is the number of sites in the parameter bucket s⃗n. We then have∫
dy′ e−iqy

′←→
𝜒 + (𝜔 , s⃗(y′)) ≈

{︄
M𝛿y

∑︁
n⃗
←→
𝜒 + (𝜔 , s⃗n⃗) mn⃗M , q = 0,

0, otherwise.
(B.11)
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For large enough samples, mn⃗/M tends toward the probability of finding a hyperfine
parameter within the corresponding N-cube. Finally, we take the limit M → ∞,
and simultaneously 𝛿s → 0, as a larger extent of nuclei can be divided into finer
and finer sub-ensembles. The prefactorM𝛿y tends towards the total y extent of the
nuclei, while the sum tends towards an integral over the probability distribution of
hyperfine parameters. Therefore, we have the continuum limit

←→
𝜒 avg (𝜔 , q) ≈ 2𝜋𝛿 (q)

∫
dN s⃗ p( s⃗)←→𝜒 + (𝜔 , s⃗). (B.12)

While the proof presented here is somewhat ad hoc, it can be made rigorous using
Lebesgue integration and the theory of random processes. Thus, an inhomoge-
neous ensemble driven by a uniform beam, will have a uniform scattered field, with
the response tensor given by the average of the individual response tensors of the
hyperfine distribution.

B.2 Isotropic hyperfine distributions
A common situation to encounter is that of polycrystalline samples with random
orientations of the crystal grains. Let us suppose that a single grain has excited and
ground state Hamiltonians

He =
∑̀︁
ℏΔ` |`⟩⟨`| , (B.13)

Hg =
∑︁
j

ℏΔ j | j⟩⟨ j | , (B.14)

with the notation as per Chapter 5. A single such grain has susceptibility tensor
given by (6.75) ,

←→
𝜒 +,0 (𝜔) =

m2
0

2Ie + 1

∑̀︁
, j

d⃗
∗
` j ⊗ d⃗ ` j

ℏ(𝜔 − Δ` + Δ j + i 𝛾2 )
. (B.15)

Let us consider the reference coordinates to be that of this initial grain. The re-
sponse of another grain, with a different orientation, can be found by a rotation of
←→
𝜒 + through the corresponding Euler angles 𝛼 , 𝛽 , 𝛾 that relate the local hyperfine

coordinates to that of the initial grain,

←→
𝜒 + (𝜔 , 𝛼 , 𝛽 ) = R(𝛼 , 𝛽 , 𝛾)←→𝜒 +,0 (𝜔)R(𝛼 , 𝛽 , 𝛾)† , (B.16)

where R is the Euler rotation matrix in polarization space. Since the polarization
space is an irreducible representation of SO(3) with l = 1, we have

R(𝛼 , 𝛽 , 𝛾)q ,q′ = D1
q ,q′ (𝛼 , 𝛽 , 𝛾) , (B.17)

where q , q′ denotes the matrix elements of the rotation in terms of spherical basis
vectors, and D is the Wigner rotation matrix.

Expanding the dipole vectors in the spherical vector basis via (5.13) ,

d⃗ ` j =
∑︁
q

C (1q , `→ j) êq , (B.18)
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we have

←→
𝜒 + (𝜔 , 𝛼 , 𝛽 , 𝛾) =

m2
0

2Ie + 1

∑̀︁
, j

∑︁
q ,q′

∑︁
k ,k′

C (1q , `→ j)C (1q′ , `→ j) êk ⊗ êk′

×D1
k ,q (𝛼 , 𝛽 , 𝛾)D1

q′ ,q2 (𝛼 , 𝛽 , 𝛾)∗. (B.19)

We now take the average over the isotropic distribution. The probability mea-
sure for Euler angles is simply the normalized Haar measure for the rotation group
SO(3), which is given by∫

d`(𝛼 , 𝛽 , 𝛾) = 1
8𝜋2

∫ 𝜋

−𝜋
d𝛼

∫ 𝜋
2

− 𝜋
2

sin 𝛽 d𝛽
∫ 𝜋

−𝜋
d𝛾 . (B.20)

We therefore have the averaged response

←→
𝜒 avg (𝜔) =

∫
d`(𝛼 , 𝛽 , 𝛾) ←→𝜒 + (𝜔 , 𝛼 , 𝛽 , 𝛾). (B.21)

Using the orthogonality of Wigner matrices,∫
d`(𝛼 , 𝛽 , 𝛾)Dlq ,k (𝛼 , 𝛽 , 𝛾)Dl′q′ ,k′ (𝛼 , 𝛽 , 𝛾)∗ = 1

2l + 1
𝛿q ,q′𝛿k ,k′𝛿l ,l′ (B.22)

we finally arrive at

←→
𝜒 avg (𝜔) =

←→
𝟙

3

∑̀︁
, j

m2
0

ℏ(𝜔 − Δ` + Δ j + i 𝛾2 )
. (B.23)

B.3 Reduction to two level system
In the absence of hyperfine splittings, the susceptibility tensor is given by

←→
𝜒 + (𝜔) =

m2
0

2Ig + 1

∑︁
me ,mg

d⃗
∗
memg ⊗ d⃗memg
ℏ(𝜔 + i𝛾/2) , (B.24)

where we have chosen the angular momentum basis for the ground and excited
states. We can evaluate the polarization dyadic by first expanding in terms of Wigner
3j symbols,∑︁
me ,mg

d⃗memg ⊗ d⃗
∗
memg = (2Ie + 1)

∑︁
q ,q′

∑︁
me ,mg

êq ⊗ ê∗q′
(︃
Ie Ig 1
−me mg q

)︃ (︃
Ie Ig 1
−me mg q′

)︃
(B.25)

=
2Ie + 1

3

∑︁
q

êq ⊗ êq

=
2Ie + 1

3
←→
𝟙 ,

where we have used the 3j orthogonality relation∑︁
me ,mg

(︃
Ie Ig 1
−me mg q

)︃ (︃
Ie Ig 1
−me mg q′

)︃
=

1
3
𝛿qq′ . (B.26)
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We also note that as the decay rate of the elastic scattering channel is given by

Γelas (M1, Ie → Ig ) =
`0k3

0

3𝜋ℏ
B(M1, Ie → Ig ) fLM , (B.27)

and we also have

m2
0 = fLMB(M1, Ie → Ig ) (B.28)

Γelas (M1, Ie → Ig ) =
1

1 + 𝛼 𝛾 , (B.29)

from before, that we can write

m2
0 =

3𝜋ℏ

k3
0

· fLM
1 + 𝛼 𝛾 . (B.30)

The susceptibility is therefore given by

←→
𝜒 + (𝜔) =

←→
𝟙

2Ie + 1
2Ig + 1

2𝜋

`0k3
0

· fLM
1 + 𝛼 ·

𝛾/2
𝜔 + i𝛾/2 . (B.31)

The scattered response will therefore have the same polarization as the field driving
it. Furthermore, for all three geometries of grazing incidence, forward scattering,
and waveguide front coupling, the polarization space of the Green’s function is ap-
proximately parallel to the plane perpendicular to the propagation direction, i.e.

←→
G mm (r⃗ , r⃗ ′ , 𝜔0) ≈ (

←→
𝟙 − k̂ ⊗ k̂)Gmm (r⃗ , r⃗ ′ , 𝜔0). (B.32)

As such, as the polarization of the incident field is entirely preserved, we can there-
fore write the total field as

B̂+ (r⃗ , t) → B̂+ (r⃗ , t)e−i (𝜔0t−k0x) êin , (B.33)

where B̂+ is now the scalar field envelope, and êin the polarization of the incident
beam.

The ‘two level’ nuclear operators then can be defined as

Π̂ee =
∑︁
me

Π̂meme , (B.34)

Π̂eg =
∑︁
memg

Π̂memg d⃗
∗
memg · êin , (B.35)

Π̂gg =
∑︁
j

Π̂ j j . (B.36)

The nuclear Bloch equations (6.14) through (6.17) then become

𝜕tΠ̂ee (x , t) = −𝛾Π̂ee (x , t) + im0

ℏ

(︂
Π̂eg (r⃗ , t)B̂+ (x , t) − Π̂ge (x , t)B̂− (x , t)

)︂
(B.37)

𝜕tΠ̂gg (x , t) = 𝛾Π̂ee (x , t) − im0

ℏ

(︂
Π̂eg (x , t)B̂+ (x , t) − Π̂ge (x , t)B̂− (x , t)

)︂
(B.38)

𝜕tΠ̂eg (x , t) = −𝛾
2
Π̂eg (x , t) + im0

ℏ

(︁
Π̂ee (x , t) − Π̂gg (x , t)

)︁
B̂− (x , t). (B.39)

𝜕tΠ̂ge (x , t) = −𝛾
2
Π̂ge (x , t) − im0

ℏ

(︁
Π̂ee (x , t) − Π̂gg (x , t)

)︁
B̂+ (x , t). (B.40)
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Appendix C

Conventions and formulae

C.1 Conventions
Fourier transforms

As we deal extensively with partial Fourier transforms, a notation to distinguish all
possible combinations of spatial and temporal Fourier transform would be cum-
bersome. Therefore, for all Fourier transforms, we distinguish between a function
f (r⃗ , t) and its corresponding transform f (k⃗ , 𝜔) etc. by the function arguments.

For time domain Fourier transforms, the convention we use for the forward and
backward transforms is

f (𝜔) =
∫ ∞

−∞
dt ei𝜔t f (t) , (C.1)

f (t) =
∫ ∞

−∞

d𝜔
2𝜋

e−i𝜔t f (𝜔). (C.2)

For spatial domain Fourier transforms, we use the corresponding convention,

f (q⃗) =
∫
ℝ3

d3r e−iq⃗ ·r⃗ f (r⃗) , (C.3)

f (r⃗) =
∫
ℝ3

d3q
(2𝜋)3

eiq⃗ ·r⃗ f (q⃗). (C.4)

With this convention a plane wave with positive frequency 𝜔 and wave-vector k⃗,
travelling in the positive k̂ direction reads

e−i𝜔t+ik⃗ ·r⃗ . (C.5)

A Hermitian operator separated into positive and negative frequency components
reads

𝜓 (t) = 𝜓+ (t) + 𝜓− (t) , (C.6)

𝜓+ (t) = 𝜓− (t)† , (C.7)

𝜓+ (t) =
∫ ∞

0

d𝜔
2𝜋

e−i𝜔t𝜓+ (𝜔) , (C.8)

𝜓+ (𝜔) =
∫ ∞

−∞
dt ei𝜔t𝜓 (t) , 𝜔 > 0. (C.9)
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In particular, for a free Bosonic annihilation operator b, with Hamiltonian given by

H = ℏ𝜔b†b , (C.10)

[b , b†] = 1, (C.11)

the Heisenberg evolution of the operator is given by

b(t) = b(0)e−i𝜔t . (C.12)

Therefore, we identify
b+ = b , b− = b†. (C.13)

Wigner symbols, Clebsch-Gordan coefficients

For the Clebsch-Gordan coefficients, we have chosen to denote

C (lq , Ie , me → Ig , mg ) =
⟨︁
Ig , mg , l , q

|︁|︁Ie , me⟩︁ (C.14)

and use the Condon-Shortley phase convention, such that the coefficients are real.
For the Wigner 3j symbols, we use the convention of Edmonds, [115, eq. 3.7.3](︃

j1 j2 j3
m1 m2 m3

)︃
=
(−1) j1− j2−m3√︁

2 j3 + 1
⟨ j1 , m1 , j2 , m2 | j3 , m3⟩ . (C.15)

With this convention, the Wigner-Eckart theorem reads [115, eq. 5.4.1]

⟨ j′ , m′ |T (k)q | j , m⟩ = (−1) j′−m′
(︃
j′ k j
−m′ q m

)︃
⟨ j′ | |T (k) | | j⟩ . (C.16)

C.2 Useful formulae

In Section 5.2, we defined the expansion coefficients

C (lq , `→ j) =
√︁

2Ie + 1
∑︁
me ,mg

(−1)Ie−me ⟨`|Ie , me⟩
⟨︁
Ig , mg

|︁|︁ j⟩︁ (︃
Ie 1 Ig
−me q mg

)︃
,

(C.17)
and the rate fractions

R(_ l , `→ j) =
∑︁
q

|C (lq , `→ j) |2. (C.18)

We will now evaluate the sums over their arguments. To do so, we will use the
following identity of Wigner symbols,∑︁

mi ,m j

(︃
j1 j2 j3
m1 m2 m3

)︃ (︃
j1 j2 j3
m1 m2 m′3

)︃
=

𝛿mkm′k

2 jk + 1
, (C.19)

where i jk is any permutation of 123, and we have assumed the triangle conditions
of j1, j2, j3 are satisfied. The identity can be obtained from their orthogonality



C.2. USEFUL FORMULAE 141

relation in m1, m2, and permutation of columns. Applying this identity to the rate
coefficients gives∑︁
q , `

C (lq , `→ j)C (lq , `→ j′) = (2Ie + 1)
∑︁
me ,mg

∑︁
m′e ,m′g

(−1)m′e−me ⟨Ie , me |`⟩
⟨︁
`
|︁|︁Ie , m′e⟩︁

×
⟨︁
j′
|︁|︁Ig , m′g ⟩︁ ⟨︁

Ig , mg
|︁|︁ j⟩︁ (︃

Ie l Ig
−me q mg

)︃ (︃
Ie l Ig
−m′e q m′g

)︃
= (2Ie + 1)

∑︁
q ,me

∑︁
mg ,m′g

⟨︁
j′
|︁|︁Ig , m′g ⟩︁ ⟨︁

Ig , mg
|︁|︁ j⟩︁

×
(︃
Ie l Ig
−me q mg

)︃ (︃
Ie l Ig
−me q m′g

)︃
=

2Ie + 1
2Ig + 1

∑︁
mg

⟨︁
j′
|︁|︁Ig , mg ⟩︁ ⟨︁

Ig , mg
|︁|︁ j⟩︁

=
2Ie + 1
2Ig + 1

𝛿 j j′ .

(C.20)
Similarly, we have∑︁
q , j

C (lq , `→ j)C (lq , `′ → j) = (2Ie + 1)
∑︁
me ,mg

∑︁
m′e ,m′g

(−1)m′e−me ⟨Ie , me |`′⟩
⟨︁
`
|︁|︁Ie , m′e⟩︁

×
⟨︁
j
|︁|︁Ig , m′g ⟩︁ ⟨︁

Ig , mg
|︁|︁ j⟩︁ (︃

Ie l Ig
−me q mg

)︃ (︃
Ie l Ig
−m′e q m′g

)︃
= (2Ie + 1)

∑︁
q ,mg

∑︁
me ,m′e

⟨Ie , me |`′⟩
⟨︁
`
|︁|︁Ie , m′e⟩︁

×
(︃
Ie l Ig
−me q mg

)︃ (︃
Ie l Ig
−m′e q mg

)︃
=

∑︁
me

⟨Ie , me |`′⟩
⟨︁
`
|︁|︁Ie , m′e⟩︁

= 𝛿``′ .
(C.21)
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